
Bachelor Informatica

Task Migration in S-Net

Stefan Kok, MSc, 6084044

June 12, 2012

Supervisor(s): Dr. Clemens Grelck (UvA), Raphael ‘kena’ Poss,
MSc (UvA), Merijn Verstraaten, MSc (UvA)

Signed: Dr. Dick G. van Albada (UvA)

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Abstract

S-Net is a coordination language designed to simplify parallel programming. It is a language
based on streaming networks that has a runtime system running different tasks that either do
computations or are directing streams to create parallel structures in such a way that data can
flow through the network with minimal delay. The goal of this thesis is to create a framework for
the runtime system that is able to migrate tasks. Task and process migration has been a research
topic since the eighties, but the difference between this research and the research done in this
thesis, is that the runtime system has more information about the program that is executed in
the runtime system. The S-Net runtime system knows the structure of the S-Net program and
this can be used to decide whether tasks should be migrated or not. This research will look into
different strategies to migrate tasks. These strategies will also use some information about the
structure of the S-Net program. However, the results show that the new implementation does
not perform better than the previous implementation of the S-Net runtime system. For now, the
framework created in this research does not rise to the expectations.

2

Contents

1 Introduction 5

2 Background 7
2.1 S-Net . 7

2.1.1 Type System . 7
2.1.2 Entities . 9
2.1.3 Network Combinators . 10

2.2 S-Net Implementation . 12
2.2.1 Runtime system . 12
2.2.2 Threading layer . 12

3 Related Work 15
3.1 Static Load-Balancing . 15
3.2 Dynamic Load-Balancing . 15
3.3 Work Stealing . 16

4 Theoretical Objectives 17
4.1 Migration framework . 17
4.2 Placement Scheduler . 18

4.2.1 Algorithms . 18

5 Implementation 21
5.1 Migration framework implementation . 21
5.2 Placement Scheduler . 22

5.2.1 Implementation of the algorithms . 22

6 Evaluation 25
6.1 Setup . 25

6.1.1 Raytracer . 25
6.1.2 Parameters placement schedulers . 25
6.1.3 Experiments . 26

6.2 Results . 26

7 Conclusion 33
7.1 Discussion . 33
7.2 Future Research . 34

A Raytracing 37

B Implementation feedback combinator 39

C Implementation changes 41

3

4

CHAPTER 1

Introduction

Software must now rely on on-chip parallelism instead of frequency increases to achieve increased
performance [1, 2, 3]. Following Moore’s Law, transistor sizes are still shrinking but clock fre-
quencies are not increasing and thus most manufacturers have chosen to put multiple cores on
a single socket in an attempt to increase computing power. There is no linear relation between
increasing the number of cores and performance, because creating programs that run efficiently
on multiple cores is not a straightforward task. One reason is the limitations of other components
besides the cores. For example the latency to access memory has increased relative to the core
pipeline cycle time, which is called the memory wall[4].

Another reason is that most programs are sequential programs and do not use the extra
cores that are available. Until some years ago, parallel programming has been done only in very
specific areas. If performance of programs is to be increased, a program should make as much
use of the parallel processing power as is available. This will require new programming tools that
are better able to utilise multiple cores.

S-Net [5] is a declarative coordination language that is designed to simplify parallel program-
ming. S-Net itself is not designed to do computations, it uses sequential blocks written by an
application programmer in some language like C. This results in a separation of programming
the application and parallelising program. Thus the concurrency programmer does not need to
have specialist knowledge about the algorithms used for the application itself. This task can be
done by the application programmer.

S-Net consists of box languages, compiler and runtime. The compiler generates a program
that creates tasks. The run-time system is responsible for the dynamic management of tasks, in-
cluding handling communication events over streams and the distribution of tasks over execution
resources.

S-Net is still in development and there are a number of parts in the S-Net runtime system that
could possibly be optimized. One such part is the division of tasks among different cores. The
prior implementation is straight-forward, a task is placed on a core according to a round-robin
algorithm. Furthermore, once a task is placed on a worker, it will not be migrated. This could
result in a sub-optimal usage of CPU-time when multiple high-demanding tasks are spawned on
the same worker, while other workers are idle waiting for work.

To ease the issues of load imbalance, further research must be done to equip S-Net with
“intelligent” placement strategies. However, there was no support for task migration in S-Net
prior to our work, but may be required. In this BSc thesis we set out two goals. The first is to
introduce infrastructure in S-Net that eases task migration, which would help in further research
in this area. As later described, this foundational goal will also involve rewording some basic
S-Net abstractions in collaboration with the rest of the S-Net ecosystem. As a second goal, we
intend to illustrate, using example placement oracles, that our proposed infrastructure makes it
easy to achieve better performance than the current static placement (Poss, Raphael. MSc.) . In
chapter 2 a description is given of the S-Net programming language. Furthermore, the runtime
system previous of this research is discribed in this chapter. Chapter 3 gives a short overview
on task migration. Next chapter 4 gives a description of what the goals are for this research.

5

Then in chapter 5 the implementation of the goals is explained. After this, chapter 6 describes
the experiments done with the S-Net runtime implementation implemented in this research.
Furthermore the results are shown in this chapter. The results will show that the framework
created during this research for now is not beneficial to the performance of the runtime system.
The last chapter, chapter 7 discusses the results and what can be concluded.

6

CHAPTER 2

Background

2.1 S-Net

S-Net [5, 16, 6, 7, 8] is a declarative coordination language. It is designed to ease the trans-
formation of existing sequential application code into a concurrent application that can exploit
parallelism in a computing platform. S-Net is not intended to do computation, but describes the
data dependencies. The actual computation is done by the box code.

S-Net is inspired by the theory of streaming networks. It consists of a network of boxes.
These boxes have a single typed input stream and a single typed output stream (SISO). Within
a box the application code is executed. This is sequential code written in a arbitrary language
like C or SAC [9]. Networks can be created by using network combinators that can be applied
on both boxes and networks. These will create new SISO components.

A data-item in S-Net is called a field. Records group fields together. Data is then communi-
cated across streams through the use of these records. Computations are done on single records.
After computation either zero records or one or more records can be passed to the output stream
of the box.

As mentioned before, the application is separated into a coordination part done by S-Net and
a computation part. This creates the possibility to breakup or separate these two tasks and let
an application programmer whose talents lie with programming algorithms, build the application
itself and let a concurrency engineer design the S-Net code that creates an application that runs
the program concurrently on different nodes.

In the rest of this section first the type system of S-Net will be described in subsection 2.1.1.
This includes a description of subtyping, type signatures and inheritance. Next, in subsection
2.1.2, boxes, filters and synchrocells are described. Furthermore, in subsection 2.1.3 the different
network combinators will be explained.

2.1.1 Type System

The type system in S-Net uses subtyping on records. A type in S-Net is a non-empty set of
record variants. Each record variant is a set of record entries, which can be empty.

Record entries can be one of three different types. Each type is a label-value pair. There are
fields, tags and binding tags. Fields are labels that include data which can not be accessed by
S-Net. The data can only be manipulated within a box.

Tags and binding tags also have labels and an integer value connected to it. Tags and binding
tags are publicly accessible for the S-Net system.

Types consist of record variant the are separated by a "|". Record variants are enclosed by
"{}". These record variants can contain fields, tags and binding tags. Fields are just strings,
while tags are strings enclosed in "<>" and binding tags use a # in front of the string to separate
them from normal tags.

An example of a type is the following:

7

{<#circle>, <x>, <y>, radius} | {<#square>, <x>, <y>, width}

The example consists of one type containing two record variants, a circle and a square, which
are denoted as binding tags. Both record variants have an x and a y tag and the circle has a
radius field, while the square has a width field.

Record Subtyping

In S-Net a subtype is a type s that is a more specific type than its supertype t. There is a formal
specification of a subtype. There are two definitions for subtyping, one for record variants and
one for types. Let BT (x) be the set of binding tags within variant x then,

1. A record variant v1 is a subtype of a record variant v2, v1 v v2, iff : v1 ⊇ v2 ∧ BT (v1) =
BT (v2)

2. A type t1 is a subtype of type t2, t1 v t2, iff (∀v1 ∈ t1∃v2 ∈ t2)v1 v v2
What this means is that a subtype v1 of a record variant v2 has the same binding tags and v1
has the same set of record entries as v2 plus additional record entries. While a subtype t1 of a
type t2 has a subset of record variants that are also in t2. Thus a record variant with less record
entries is likelier to be a supertype than a record variant with more record entries. For types the
opposite holds, a type with more record variants is likelier to be a supertype as a type with less
record variants.

Type Signatures

A type signature is a mapping from a non-empty set of types to a non-empty set of types. It
describes the types that can go into and out of a box or network. An example is:

{a, b} | {c, d} -> {<x>} | {<y>}, {e} -> {z}

Here there are two mappings separated by a |. The first mapping can accept two different types
of record variants, {a, b} and {c, d} as input type and has either <x> or <y> as output type.
While the second mapping has {e} as input type and {z} as output type. The first record variant
can also be rewritten as:

{a, b} -> {<x>} | {<y>}

{c, d} -> {<x>} | {<y>}

A signature with only one input variant will be called a normalized type signature. The output
type cannot be normalized in the same way as the input type.

Flow Inheritance

Using subtyping brings a problem to what should be done with fields and tags in the subtype
that does not belong to the input type signature. For example, with the type signature:

{a} -> {x}

and an incoming record:

{a, b}

What should be done with field b? It is possible to just discard this field, but that would lose
the advantage of re-usability with subtyping. In S-Net the choice is made to append a copy of
any fields or tags from an input record, that does not appear in the input type signature, to
the output record. In the example given, this would result in the output record looking like the
following:

{x, b}

But this will cause another problem, namely what to do when the field or tag is in the output
type signature? For example, {a} -> {x, b} would result in a duplicate of b in the output
record which is not possible. The solution is to keep the field or tag from the output record and
discard the version of the input record.

8

2.1.2 Entities

Box

A box has a single input and a single output stream and is stateless. Each box has a unique
name. A box runs an external code possibly written in another programming language, i.e. it
runs the code written by the application programmer. They have a box signature which is a
normalized type signature. The order in which all input arguments are given, is defined by the
order of the type signature. This is because for example box code implemented in C for example,
the order of input arguments is important and thus the problem is solved in this matter.

Filter box

As with normal boxes, filter boxes are also stateless. There are a number of roles that the filter
box is used for, such as:

• removing fields or tags from records

• duplication of fields or tags

• adding some tag

• splitting records

• some simple computations on tag values.

A filter box has exactly one input variant, zero or more guarded actions and one unguarded
action. A guarded action consists of a boolean expression, if the expression is true, the guarded
action will be performed, otherwise the next action will be performed. The unguarded action is
the last action in the sequence and if all boolean expressions are false, the unguarded expression
will be executed. Some examples of filters are:

1. [{a, b} -> {a}]

2. [{a, b} -> {a}, {b}]

3. [<a> -> <a>, <b=a>]

The first just removes b from the record. The second splits the record into two records and the
last splits the record into <a> and copies <a> to . For a more elaborate description of box
functions we refer to [8].

Synchrocell

Synchrocells are the only entities that have a state. They are used to combine multiple records
into one record, as this is an aspect of the filter box which it doesn’t do. The reason a synchrocell
has a state is that it has to wait for multiple records to pass the synchrocell and wait for the
correct types of records to come in and combine them into one new record. An example of a
synchrocell is the following:

[| {a, b}, {c, d} |]

This synchrocell waits for two records, one that matches {a, b} and the other {c, d}, it can
also match subtypes of these record variants. When one of these record variants is matched, it is
stored and waits for the other record that matches the other record variant in the pattern. All
other incoming records will be passed directly to the output stream, including records that are
already matched by one of the record variants. Once all records in the pattern are matched, they
are combined into one record and the synchrocell will stop working, i.e. it will pass any incoming
record directly to the output stream.

9

2.1.3 Network Combinators

Network combinators are binary operators that can be applied to boxes. The result is a network
with one input and one output stream. A network can also be used as an argument for the
combinator. From now on, the word components [7] is used instead of boxes and networks on
which combinators are applied to.

There are 5 combinators. 3 of these have a both deterministic and non-deterministic version
of the operator. These are the star, feedback and parallel combinator. A deterministic operator
preserves the order of the records, this will result in records that are the first to come in, are
the first to go out. Deterministic combinators are defined in the S-Net language by using two
combinator symbols instead of one, ie. **, ||, !! instead of *, |, !. The serial and feedback
combinators only have a deterministic version.

Serial Combinator

The serial combinator .. puts two components into a sequence. The output stream of the first
component will be the input stream of the second.

foo bar

{b, c}{a} {c, d}

net example {
 box foo ((a) -> (b, c));
 box bar ((b) -> (d));
} connect foo..bar;

In the example, there are two boxes, foo and bar. The type signature for this network will now
be {a} -> {c, d}. Note that c is part of the output signature of foo but not the input signature
of bar. It is not used in bar and as described under subsection 2.1.1, it will be appended to the
output of the bar box.

Star Combinator

The star combinator * is the dynamic counterpart of the serial combinator using only a single
component. A star combinator has a component and a stop condition as arguments. As long
as the output of the given component is not equal to the stop condition, the output record will
go through a copy of the same component, thus creating a sequence of the same component. A
note to make is that a record could immediately be passed to the output stream if it meets the
given stop condition.

foo bar

{a}{a} {a}

net example {
 box foo ((a) -> (a) | (<stop>));
} connect foo*{<stop>};

{<stop>}

. . .

In this example, any incoming record with type signature {a} will go to the input stream of foo.
Afterwards, the record is checked, if the type signature is {a}, it will be forwarded to a next
instance of foo and if it is {<stop>} it will go to the output stream.

10

Feedback Combinator

The feedback combinator \ has some similarities with the star combinator. A record will go
through a given component and stops when the condition is not met. Here there are three
important differences in comparison with the star combinator. First the record will pass the
component at least once. Furthermore the condition given determines continuation instead of
ceasing. Finally, there is only one instance of the component created, ie. if the record does met
de continuation condition, it will go to the same instance of the given component instead of a
new one. The feedback combinator can be seen as a sort of loop.

foo

{a, <cont>}

{a. <cont>} {b}

net example {
 box foo ((a, <cont>) -> (a, <cont>) | (b));
} connect foo\{<cont>};

This example shows a network for a feedback combinator. Box foo will either output {a, <cont>}

or {b}. The condition to continue is <cont> and if the output of foo is {a, <cont>}, the record
will loop back to the input stream of foo, otherwise it will write {b} on the output stream.

Parallel Combinator

Just as the serial combinator the parallel combinator | is a static combinator. It has two com-
ponents as arguments and puts these two components in parallel with each other. An incoming
record will then go either to the first or second components, based on the type signature of the
record and component. If the records type signature matched both components type signatures,
it will go to the one that matches the records signature the closest.

foo

bar

{b, c} | {d}{a} | {b}

net example {
 box foo ((a) -> (b, c));
 box bar ((b) -> (d));
} connect foo | bar;

The parallel combinator in this example puts two boxes foo and bar in parallel. The input type
signature will then be {a} | {b}. All records with {a} will be forwarded to foo and records
with {b} to bar. The output will either be {b, c} or {d}, depending on which box did the
calculations.

Split Combinator

The split combinator ! is the dynamic counterpart of the parallel combinator and just as the
star combinator is only applied to one component. The second argument is an index tag. For
each value of the index tag, it creates an instance of the component. Incoming records are then
routed to the instance that has the same tag value.

11

foo

{c}{<a>, b}

net example {
 box foo ((<a>, b) -> (c));
} connect foo!<a>;

foo

foo

foo

. . .

The example for the split combinator uses the index given in <a> and forwards the record to the
copy of foo with the same index.

2.2 S-Net Implementation

2.2.1 Runtime system

In this subsection a global explanation will be given on how a task runs in S-Net. In figure 2.1
a graphical example is given on how such a task runs.

First a scheduler chooses a task to run. It will then go to the task wrapper that runs the task
in a loop. The task will first do a read to fetch a record from the input stream. If no records
are on the input stream, the task is suspended and the scheduler will run another task while the
task waits for an incoming record.

When there is a record on the input stream, the task will be set to ready and the scheduler
will run the task when other tasks with higher priorities have finished or are suspended. The read
will then return a record to the task wrapper, which calls the box function. The box function
will do some calculations on the incoming record and writes its output to the output stream.
This in turn can also be suspended, for example when the output stream buffer is full. It will be
suspended just as with the read function and at some moment in time the scheduler will again
run the task if the output record can be written to the stream. Finally the box task returns and
the task wrapper will begin another iteration.

2.2.2 Threading layer

LPEL stands for Light-Weight Parallel Execution Layer [10]. LPEL replaces the original thread-
ing back-end for the S-Net run-time system [11]. In the standard implementation each task runs
in its own PTthread. Instead, LPEL uses workers that each run on a single core, which run
using a PThread. Furthermore, it uses user-threads called tasks that run on the worker. The
advantage of this implementation is that there is a potential to control where tasks should run
and as a result, the run-time system such as S-Net, could do a better job because it has more
information about the program. The reason for this is that PThreads are kernel-threads and
where and when threads run is decided by the the operating system. However, the potential
of scheduling tasks by LPEL itself is not implemented here and is described in the following
chapters as that is the research topic of this thesis.

This implementation can be very inefficient, the scheduling algorithm of the operating system
may work well for certain applications, but it is not optimized for that specific application.

12

Figure 2.1: This is an example of how a task runs in S-Net. First the scheduler will choose a
task to run. Then it will read from the input stream to fetch an incoming record. If the stream
is empty it will wait and the scheduler will run another task, while the suspended task waits on
an incoming record. When the task has a record on the input stream, the scheduler will run it
once other tasks that have priority have finished. It will then run the box function to do the
calculations. After the calculations are done, it will write to the output stream, which may be
suspended as well. Finally when the box function returns, the next iteration of the task will be
done.

13

Furthermore, each task runs in its own thread, which means that if there are a lot of tasks
running, the OS has to do a lot of context-switching, which is expensive.

A solution is to have a combination of kernel-threads and user-threads. Each core runs its
own kernel-thread, a PThread. The PThread runs a worker that runs user-threads called tasks.
A worker consists of a scheduler, a priority queue and a mailbox. Communication between tasks
and a worker is done using the mailbox. For example when a new task is created it sends a ready
message to that mailbox.

The scheduler uses a the priority queue to decide which task should run. Tasks that are not
in the queue are tasks that are waiting for IO. A task could, for example, be waiting for data to
come on the input stream.

Streams in LPEL are connected to two tasks. A task that produces data and a task that
consumes data. When a stream is used it is connected to two stream descriptors. These stream
descriptors are wrappers to bind a stream to a task. If a read is done and there is no data on
the stream, the task connected to the stream by the stream descriptor will be suspended. The
stream descriptor is also used here for the wake-up. The task can be woken if there is data on
the stream, by getting the consuming stream descriptor and setting the task to the ready state
and send a message to the worker.

14

CHAPTER 3

Related Work

3.1 Static Load-Balancing

Static load-balancing [12] aims to divide the work over multiple processors before a program
starts computation. This might not be the most effective strategy as workloads may fluctuate
during execution. Also, the state of the system may change, this might cause the program to get
bogged down because other programs are running as well, or communication between different
processors slows down. Some strategies for initial placement [12] are:

Round robin, here each task is assigned to a next processor, after all processors are assigned
to a task, the next task is assigned to the first processor and so on,

Random, tasks are randomly assigned to different processor,

Recursive bisection, aims to divide the problem into subproblems and dividing an equal
amount of computation time over the different processors, with minimum message-passing.

3.2 Dynamic Load-Balancing

Dynamic load-balancing, [12] unlike static load-balancing, aims to divide computational time
over different processors during program execution. This means that tasks can be migrated to
other processors if a processor has too much work, while others are idle or have very little work
to do. Load balancing can be done centralized or distributed. A centralized system uses a master
slave system where other ’worker’ processes request tasks from a master. The master has a task
queue and decides what tasks are given to which worker.

A distributed system has multiple ‘task pools’ where slaves can ask for work. A fully dis-
tributed system does not have any such pools, just workers that communicate with each other
if they need work or need work to be taken over by others. A distributed load-balancing system
has a number of policies to decide migration [12], namely: a transfer policy, a selection policy,
a location policy and an information policy. A transfer policy decides if a node is suitable for
migration. This holds for both sending and receiving nodes. An example of such a policy is a
threshold policy with high-loaded, middle-loaded and low-loaded nodes [13]. Where low nodes
are nodes with little work and are target for receiving work. Medium nodes have enough work
and are not used for placement. High nodes have too much work and are targets for sending
worker.

The selection policy decides which tasks are to be migrated. There are some different strate-
gies for selection, for example random selection or choosing tasks which get little running time.

The location policy is used for finding a good “transfer” partner. In a master-slave system
this is done by finding the information at a master, in fully distributed systems this is done by
communicating with each other. This communication is expensive and often is limited to, for
example, only neighbor-nodes [12].

15

The information policy is responsible for collecting information about the loads of different
workers. As already noted, communication is expensive and this policy decides when the worker
sends information to other workers and to whom. This can be done using different methods, for
example only communication when a worker is in a state that it needs to remove tasks or fetch
new tasks. Another method is to periodically send information to other workers.

3.3 Work Stealing

Work stealing is done on shared-memory multiprocessor systems [12]. As the name implies,
workers try to steal work from other workers. Stealing workers (thieves) do not have enough work
and try to find heavy loaded workers (victims) that do. One aspect to keep in mind is that locality
can play a role in shared-memory systems. This makes it more interesting for a stealing worker
to find workers that are close to the thief. This could potentially decrease communication time
as the memory can be accessed faster compared to tasks stolen from processors that physically
lie further away.

Also the strategy of which task to steal is important [12]. Stealing a task might cause problems
because it is already in the cache of the core. Migrating it would result in cache misses for the
core as it needs to load other data to it. Mostly tasks are stolen from the back of the queue
as these tasks will take a while to be loaded for running and will not cause any problems when
migrating them.

16

CHAPTER 4

Theoretical Objectives

The goal of S-Net is to better use the possibilities of parallelism on multi-core machines and
multi-node systems. S-Net programs are dynamic in the sense that if needed, networks can
grow and shrink. This means that placement can not be decided before the program starts
running. Another important point is that the amount of computation time for a box task is
often dependent on the input record. S-Net should thus have a runtime-system that actively
tries to balance the workload over the different workers.

As discussed in chapter 3, a solution for balancing work is to use an algorithm like work-
stealing. However the S-Net runtime system has some knowledge of the program. First of all
there is knowledge about the different tasks. A distinction can be made between control tasks
and box tasks. Here control and box tasks are all the entities named in subsections 2.1.2 and
2.1.3, furthermore this also includes a collector/merger used to gather data from different streams
such as in the parallel combinator or split. Next there is also knowledge about records, fields
are opaque to S-Net, but tags and binding tags are not. This might help decide how long a box
task runs. Using this knowledge could have advantages over the scheduling techniques used by
an operating system, this is another reason why the LPEL implementation is used instead of
PThreads.

Locality is another advange in the S-Net system. A program is a network of boxes, this
network has a certain topology which can be used to determine where to place tasks. This could
be important because multi-core systems might have shared memory, but cores that are further
may apart have a higher communication time. Instead of migrating tasks, migrating parts of the
S-Net network, might decrease communication time. For migration this means that complete
parts of the network are migrated together to the same worker.

4.1 Migration framework

This section will discuss the framework for migrating tasks. This section will explain what should
be done to create a framework for task-migration.

Figure 4.1 shows a diagram of how task migration can be achieved. Instead of the scheduler
spawning a task, it first spawns an initialisation function. This is only done on creation of a task.

After this, the main function is called. Reads and writes are done in the task and when an
iteration 1 is finished, instead of looping to the top of the task, the task respawns itself. Instead
of an iterative function, this looks more like a recursive function. The result is that at the end of
one iteration, the complete state is known and thus can be given as an argument when spawning
the new task.

1An iteration is one run in a loop

17

Figure 4.1: The framework that uses task-migration starts with the initialization of a task. After
this, the main function is called, which does a read. It then suspends if there is no record on the
input stream and other tasks can then run. When the tasks is ready and the scheduler assigns
this task to run, it then does some computations and writes to the output stream, which may
also suspend. Finally the task calls a spawn function, which spawns a new task, running the
same main function.

4.2 Placement Scheduler

A placement scheduler is used to decide on which workers a task should run. This section will
discuss which implementation we chose and why. One consideration to make for a placement
scheduler whether it should be a synchronous or an asynchronous system. A synchronous system
would be an implementation where during the respawn the task asks the scheduler whether it
should migrate or not. An asynchronous implementation has an active scheduler. The scheduler
is running in parallel in with the tasks and sets the parameter on which worker the task should
respawn asynchronous of the respawning.

This might result in a scheduler deciding a task should migrate, but as the task is still running
it does not do anything with this information. Then the scheduler decides the task should be
kept on the same worker and the task finally respawns on the same worker. Figure 4.2 shows a
graphical representation of this implementation.

An advantage of this implementation is that the scheduler can make decisions based on the
whole state of the runtime system, instead of only the state of one task. Thus, it can be decided
to migrate multiple tasks at once.

4.2.1 Algorithms

As already discussed in this chapter, the S-Net scheduler has some advantages over more naive
schedulers used by an operating system. Distinguishing between box tasks and control tasks is
one such advantage that is implemented. Control tasks are tasks that are used to direct the

18

Figure 4.2: An example of how the placement scheduler works. Each box is a task running,
containing a set of variables. This set of variables also contains the current and new location of
the task. The scheduler decides where the task should do its work and will write this to the new
location variable. Once a task is finished with an iteration and the scheduler has decided the
task should migrate, a new task is created and placed on a different worker.

stream flow, heavy computations are done in boxes. Creating workers that only handle short
control tasks or heavy box tasks might increase the flow of the network. Control tasks are able
to continuously pass records and create new entities, without waiting on computational intensive
box tasks.

Another method to use task type information is to use a priority queue for scheduling. For
example, we could give control tasks a higher priority as they are short tasks and take up little
computation time.

Initial placement is another aspect of placement. This part is done without the use of the
placement scheduler, as the placement scheduler only does scheduling using active tasks, that
are already created. The choice is made to use some form of locality for initial placement. Some
combinators initially have only a dispatcher running, namely the split and star combinators.
When created these are very small tasks, but can create a large amount of new tasks. On the
other hand, the parallel combinator is created statically and this can be used to decide where
tasks after the parallel combinator should be created. The parallel dispatcher is created on the
same worker as the combinator or box that writes to the parallel dispatch input stream, but the
second component of the parallel combinator is created on a different worker. Furthermore for
the split combinator any newly created instances of the network within the split are placed on a
new node.

The placement scheduler itself is implemented as two different algorithms. The first makes a
random choice to migrate and where to migrate. The second uses the waiting time of a task. A
task has a state, created, running, ready, blocked, mutex and zombie. A task should either be

19

waiting on a read or write, or it should be running. A task which is ready to run but is waiting
for other tasks to complete could possibly run on another worker.

Each task has a ready time: readyt. This is the amount of time the task was ready for a
certain period. This period is based on the amount of switches between the task switching from
the ready state to another state. The average of this ready time is:

µready = readyt/n

This number is then used to calculate the average ready time for each worker. This is done by
taking all m tasks that are in a ready queue as follows:

µworker =

∑m
i=1 µready

m

A threshold function τ then decides if tasks should be migrated. This happens when µready ≥
µworker · τ . This task is then put in an ordered list. If the task is placed at the back of the list
(is closest to the threshold), but the list is not big enough, it will not be migrated. This ensures
that the number of tasks that is migrated is limited, to prevent the scheduler from excessive task
migration.

Workers that are waiting, i.e. do not have a running task, are candidates for the tasks that
are selected for migration. These workers do not take part in the procedure of selecting tasks to
migrate2.

2A worker that is waiting, should not have any tasks in its queue as these are tasks that are ready to run

20

CHAPTER 5

Implementation

5.1 Migration framework implementation

In this section a description is given on the changes made to the original implementation of S-Net
and LPEL. The changes to make a framework for task migration. As mentioned in section 4.1
tasks should re-spawn instead of iterate.

To create a framework that removes the iteration within the tasks as described in chapter 4,
the different entities are changed. The following entities are changed:

• The box task

• The collector

• The feedback combinator

• The filter

• The parallel combinator

• The split combinator

• The star combinator

• The synchrocell

Each of these entities have a main task1 and an initialization task. The initialization task
is responsible for initializing some parameters like stream descriptors for the input and output
streams. The main task is responsible for one iteration of the task. The iteration will either
terminate or a re-spawn function is called.

An entity runs in an LPEL task which calls a function to run the code in S-Net. This consists
of a loop that keeps running until a flag in the arguments is set to stop. This function calls the
actual entity:

RunTask(entity ent) {

do {

ent.run = false;

ent.function;

} while(ent.run);

delete ent;

}

1The feedback combinator has multiple tasks. The description of the feedback combinator can be found in
appendix B

21

There are two more spawning functions SNetThreadingInitSpawn and SNetThreadingReSpawn

added. The first spawns the initial task. The second is called by the entity when a task should
continue to run. It compares two variables, the first is the id of the worker on which the task
runs and the second is the worker the task should migrate to, which is set by the placement
scheduler. If these two ids are different, the task should migrate and a new task is created and
the current task stops. If the worker ids are the same, the flag in the entity arguments is set to
run and a next iteration is done.

This implementation does not have a full respawn framework, as a task is not respawned if it
keeps running on the same worker. This is an easy and effective implementation which simulates
the circumstances described in chapter 4.

However this new implementation introduces a problem with stream descriptors. A stream
descriptor is bound to a stream and task. When a task migrates, a new task is created. The
result is that stream descriptors have become useless, because they are not bound to the correct
task anymore. There are some possibilities to solve the problem, one is to either update the
stream descriptors, another is to destroy all old stream descriptors and create new ones. These
solutions are possibly expensive as they require iterating through different stream descriptors2.
The solution chosen here is to update the stream descriptor when it is needed. The functions
to read and write to streams use the stream descriptor to get the task that is connected to the
stream. In these functions it is possible to find the current task that is running, which is the task
that calls the read or write function. This can then be used to update the stream descriptor.

5.2 Placement Scheduler

The placement scheduler is implemented as a task on a worker. This worker is only used for
running the placement scheduler and runs in the background, like the input and output manager
of the runtime system. Furthermore, the scheduler consists of a loop which calls the placement
algorithm and then yields itself. This creates the possibility for the worker to fetch messages
from the mailbox, most importantly a message that tells the worker to terminate.

There are a number of possibilities on how tasks are initially scheduled. As already discussed
in section 4.2 a task can be scheduled to run using a priority queue, but there is also the possibility
to use segmentation between control and box tasks. They both use a flag to decide either which
priority the task has or on which worker the task should be placed.

As the priority queue already exists in the LPEL code, this part does not have many changes
to the LPEL code. The only difference is that the function to create a task has an extra parameter
for the priority.

The system for segmentation between control and box tasks is implemented by using a list for
workers that run box tasks and a list for workers that run control tasks. A parameter determines
the number of workers running control tasks.

5.2.1 Implementation of the algorithms

We implemented two different placement scheduler algorithms, random scheduling and ready-
time scheduling. The random scheduling algorithm randomly assigns tasks to new workers. It
goes through each worker using an iterator that goes through all tasks that are in the ready
state that are in the priority queue of the task-scheduler of the worker. It first decides using a
threshold if a task should be migrated, after this the new worker is decided at random.

The ready-time scheduling algorithm is based on ready time. Each task has a set of parameters
that store the relevant statistics. There is a variable that keeps track of the time that a task
went from some state to ready. After the task switches back to another state, the time is taken
again and the difference is calculated, this is the time that the task has been ready.

There are a number of choices for keeping track of the ready time. One is to just add ready
time and take the average each time it is needed. This would create a problem that the state of
the worker changes over time and for example long waiting times that are long solved still have
some weight in the average. The other solution is to just take one measurement. The problem

2The problem is mostly the collector which has a dynamic set of stream descriptors

22

with this solution is that it is a small snapshot and it could be that the time the task is in ready
mode is small all the time except for one moment, which causes the task to be migrated.

The solution used is something in between the previous two. The average is taken over a
maximum number of times that the state of the task switches from ready to another state. A
sliding window is used to deal with the problem that only one measurement is taken. This is
done using a binary sliding window in the task. This stores the sum of the measured ready times.
Every n times, the other value in the sliding window is used. Every n/2 times the other value
starts taking measurements. A graphical representation is shown in figure 5.1.

Figure 5.1: The sliding window algorithm first adds time to the upper measurement. Green/light
implies that it is written to and also used by the placement scheduler for the average ready-time.
Red/dark means that it is written to, but is not used by the placement scheduler. At step
5, the lower array is also written to. When the first measurement has summed ten different
measurements that a task has been ready it is reset and the second measurement is used by the
ready-time placement algorithm.

The other part to keep track of is if the worker has been idle, waiting for tasks to finish IO.
A flag has been added to the workercontext. This is set to one when a worker has been waiting,
the placement scheduler sets this flag to 0 on the first encounter of the worker.

The first step the placement scheduler takes, is to find which workers are receivers and which
workers are senders. This is done in two ways, a worker is a task receiver if the flag is up and
the other possibility is that there are no tasks in the queue. All other workers are potential task
senders. For each of these sending workers, the average ready time is taken, by summing the
ready times of all tasks in the priority queue and dividing it by the number of tasks in the queue.

After this tasks are selected for migration. There are two methods to decide which tasks
should be migrated. First every task in the priority queue is compared with the average ready
time of the worker its running on. If the average ready time of the task is higher than the time
of the worker multiplied by some value, it is selected for migration. Next there is a fixed sized
ordered array. The first task has the highest average ready time. If a task does not fit in the
array, it is not selected for migration. This also reduces the number of tasks that can be selected
for migration.

In the next step, for each receiving worker a more or less equal number of tasks is selected,
because it is not known how high the workload is, relative to the other workers. This is done by
taking a random worker that is stored in the list of receiving workers and choosing every task in
the list where imodulowreceiving = 0. For the next worker this is k+(imodulowreceiving) = 0.
The tasks selected are then assigned to the receiving worker id.

23

24

CHAPTER 6

Evaluation

6.1 Setup

In this section the setup for the different experiments is discussed. In subsection 6.1.1 the
program that will be used for the experiments is described. Then in subsection the parameters
that are used by the placement schedulers are outlined. And finally in subsection 6.1.3 the
different experiments that are done and the values used for the parameters are presented.

6.1.1 Raytracer

The raytracer algorithm [14] is an algorithm which is ideal for parallelization. It is used in
computer graphics to create a 2 dimensional image out of a 3 dimensional scene. Every pixel
beams a ray into the scene and returns the color that the ray crosses first in the scene. The
raytracing can be done independently for each pixel and thus it can be done in parallel.

The SNet implementation for the raytracer can be found in appendix A. It consists of three
main parts, a splitter, solvers and a merger. The splitter splits up the data into parts, hands
them over to the solvers that do raytracing on the given parts and afterwards the merger collects
all data and creates an image.

The raytracer has a number of inputs. The first is the scene. Then there are the number of
nodes, tasks and tokens. The number of nodes defines the number of solvers that are running
concurrently. The number of tasks is used by the splitter to determine how to split up the data
in the scene. It creates a number of data packages which consist of an equal amount of work
that are passed to the solver. The tokens can be ignored in a Single Memory Processor setup as
this is only used in distributed S-Net [6] in this case and is set equal to the number of tasks [14].

6.1.2 Parameters placement schedulers

As already described there are two placement schedulers, which are both used for experiments.
Both schedulers have a threshold parameter. For the random scheduling algorithm this threshold
defines the chance that a task migrates. The higher the threshold the lower the chance a task
migrates.

The ready-time scheduling algorithm uses the threshold to determine if the waiting time is
long enough for it to migrate. This is compared to the average waiting time of all tasks for a
worker. The threshold value is multiplied by this average and if the task has a longer ready-time
it will be put in the waiting queue.

Other parameters used are:

• The number of workers that should run the box and control tasks.

• A parameter for programs running separate workers for box tasks and separate workers for
control tasks. The number defines the amount of workers assigned to run control tasks.

25

• A flag that defines if priorities are used for box and control tasks, where boxes have a lower
priority.

6.1.3 Experiments

There are a number of experiments done to compare the different runtime implementations and
placement algorithms. This also contains the runtime implementation prior to this research. To
do these experiments, a time measure is used that is build into the raytracing program. It uses the
function clock_gettime to measure the time between start and finish of the program. Timings
on this program are done after the run-time system has been initialized and before the run-time
system closes down. In the table below are all the parameters that are used for these experiments:

Random scheduling algorithm
Threshold 0.5, 0.75, 0.9, 1

Ready-time scheduling algorithm
Threshold 0.9 1 1.05 1.1

Raytracing
Number of solvers 1, 2, 4, 6 , 8, 10, 11

Number of workers 1, 2, 4, 6, 8, 10, 12
Number of workers control tasks 1, 2, 3, 4, 5, 6, 7, 8
Number of reruns 3
Measure precision in seconds 0.4000250

A combination of these parameters is used also with and without using priority scheduling and
task classification.The precision of the measurments is the amount of deviance the measurement
can have. All experiments are done on a shared memory machine, a 12 core Intel(R) L5640 2.27
GHz Xeon(R) CPU, with 24 Gigabytes of RAM.

6.2 Results

In figure 6.1 a comparison is shown between four different implementations of the runtime sys-
tem, the random placement algorithm, the ready-time placement algorithm, the previous S-Net
implementation without task migration using LPEL and the Pthread implementation (which
does not run LPEL). The old implementations perform better for each worker setting. One note
to make is that the performance does not improve when placement scheduling is used using
two workers compared to using one worker. The reason for this could be the initial placement
strategy and the lack of migration when a small number of workers is used.

Furthermore, in figures 6.2 and 6.3 barplots are shown that compare the performances of the
different algorithms. It compares the performance without the use of a priority queue and with
the use of a priority queue. The random placement algorithm does not have consistent results.
The ready-time placement algorithm shows that from six workers the thresholds 0.9 and 1 are
performing better than higher thresholds. This shows that when chances are higher for migration
the performance is getting better. Also, it performs better than the random scheduler and thus
can be concluded that the information used by the read-time placement algorithm has some
benefits on the performance. The difference between using a priority queue and not using one,
does not seem to matter. Also note that a threshold of one for the random placement algorithm
does not do any migrations and the performance is not better than when the placement scheduler
does migrate tasks. This implies the initial placement strategy implemented in this research does
not perform as expected. Figures 6.4, 6.5, 6.6 and 6.7 show all the performances again for the
random placement algorithm and ready-time placement algorithm, in 3d plots.

In figure 6.8 the performance is plotted using classification for the ready-time placement
algorithm with threshold 0.9 and 1 and the random placement algorithm with threshold 0.5 with
12 workers. On the x-axis there are the number of workers used for control tasks, the total
number of workers is twelve and the number of workers for box tasks is twelve minus the number
of workers for control tasks. The ready-time placement algorithm starts to perform better when
more workers are assigned to run only control tasks. Reasons for this are unclear.

26

Figure 6.9 shows the speedup for the random placement algorithm with threshold 0.5, the
ready-time placement algorithm with threshold 0.9 and runtime system prior to this research.
The speedup is calculated as follows: Speedupp = Time1

Timep
where p is the number of cores on which

the program runs, Time1 is the measurement of the S-Net and LPEL implementation without
task-migration on one core. In figure 6.10 the efficiency is shown for the the three different
runtime implementations. The efficiency is calculated as follows: Efficiencyp =

Speedupp

p . The old
implementation shows a linear decline in efficiency. From 2 workers on the ready-time placement
algorithm has a linear increase in speedup. The random placement scheduler shows that there
is also inconsistency in the speedup.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

Ti
m

e
 i
n
 s

e
co

n
d

s

Number of workers

Comparison between different implementations

random, thr = 0.5
ready-time, thr = 0.9

old
pthread

Figure 6.1: This graph shows the performances of the different placement scheduler algorithms
compared to the old S-Net and LPEL implementation and the old S-Net pthread implementation.
The x-axis defines the number of workers used by the program and the y-axis is the time from
the start of the raytracing program until the end. The startup and cleanup of S-Net and LPEL
runtime system is not included in this measurement.

27

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 6 8 10 12

Ti
m

e
 i
n
 s

e
co

n
d

s

Number of workers

Comparison of the different implementations for the ready-time algorithm

 none, thr = 0.9

 priority, thr = 0.9

 none, thr = 1

 priority, thr = 1

 none, thr = 1.05

 priority, thr = 1.05

 none, thr = 1.1

 priority, thr = 1.1

old

Figure 6.2: This barplot shows the performances for the ready-time placement algorithm. This
plot compares the implementation with priority with the implementation without. Old is the
previous S-Net and LPEL implementation that did not use task-migration

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 6 8 10 12

Ti
m

e
 i
n
 s

e
co

n
d
s

Number of workers

Comparison of the different implementations for the random algorithm

thr = 0.5

priority, thr = 0.5

none, thr = 0.75

priority, thr = 0.75

none, thr = 0.9

priority, thr = 1

none, thr = 1

priority, thr = 1

old

Figure 6.3: This barplot shows the performances for the random placement algorithm. This
plot compares the implementation with priority with the implementation without. Old is the
previous S-Net and LPEL implementation that did not use task-migration

28

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0 2 4 6 8 10 12

 15
 20
 25
 30
 35
 40
 45

Time

Random scheduler algorithm

Threshold

Number of workers

Time 15
 20
 25
 30
 35
 40
 45

Figure 6.4: This 3d graph shows the performance of the Random placement algorithm. The
thresholds used are 0.5, 0.75, 0.9 and 1 (1 implies that tasks will not migrate). The other
axis defines the number of workers. The z-axis shows the performance of the algorithm for the
raytracing program. The startup and cleanup of the S-Net and LPEL runtime system is not
included.

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0 2 4 6 8 10 12

 22
 24 26
 28
 30 32
 34
 36
 38 40
 42
 44

Time

Random scheduler algorithm with priority queue

Threshold

Number of workers

Time 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44

Figure 6.5: This 3d graph shows the performance of the Random placement algorithm using a
priority queue with priority 1 for control tasks and priority 0 for box tasks. The thresholds used
are 0.5, 0.75, 0.9 and 1 (1 implies that tasks will not migrate). The other axis defines the number
of workers. The z-axis shows the performance of the algorithm for the raytracing program. The
startup and cleanup of the S-Net and LPEL runtime system is not included.

29

 0.9

 0.95

 1

 1.05

 1.1

 0 2 4 6 8 10 12

 10
 15
 20
 25
 30
 35
 40

Time

Ready-time scheduler algorithm

Threshold

Number of workers

Time 10
 15
 20
 25
 30
 35
 40

Figure 6.6: This 3d graph shows the performance of the Ready-time placement algorithm. The
thresholds used are 0.9, 1, 1.05 and 1.1. The other axis defines the number of workers. The z-axis
shows the performance of the algorithm for the raytracing program. The startup and cleanup of
the S-Net and LPEL runtime system is not included.

 0.9

 0.95

 1

 1.05

 1.1

 0 2 4 6 8 10 12

 10
 15
 20
 25
 30
 35
 40

Time

Ready-time scheduler algorithm with priority queue

Threshold

Number of workers

Time 10
 15
 20
 25
 30
 35
 40

Figure 6.7: This 3d graph shows the performance of the Ready-time placement algorithm using
a priority queue with priority 1 for control tasks and priority 0 for box tasks. The thresholds
used are 0.9, 1, 1.05 and 1.1. The other axis defines the number of workers. The z-axis shows
the performance of the algorithm for the raytracing program. The startup and cleanup of the
S-Net and LPEL runtime system is not included.

30

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

Ti
m

e
 i
n
 s

e
co

n
d

s

Number of workers for control tasks

Random and ready-time algorithms using classification

ready-time, thr = 0.9
ready-time, thr = 1
random, thr = 0.5

old

Figure 6.8: Classification using the ready-time and random placement algorithms with 12 work-
ers. The x-axis defines the number of workers running control tasks, the number of workers for
box tasks is the total number of workers minus the number of workers for control tasks. The
y-axis is the amount of time measured from the start of the raytracing program up to the end.
The startup and cleanup of the S-Net and LPEL runtime system is not included.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of workers

Speedup

Random
Ready-time

Old

Figure 6.9: This barplot shows the speedups compared to the previous S-Net and LPEL imple-
mentation using one worker. The previous S-Net and LPEL implementation is also plotted as a
comparison next to the random placement algorithm with threshold 0.5 and ready-time place-
ment algorithm with threshold 0.9. The speedup is calculated as follows: Speedupp = Time1

Timep

where p is the number of cores (and workers) that are used.

31

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 6 8 10 12

E
ffi

ci
e
n
cy

Number of workers

Efficiency

Random
Ready-time

Old

Figure 6.10: This barplot shows the efficiencies compared to the old S-Net and LPEL implemen-
tation using one worker. The old S-Net and LPEL implement is also plotted as a comparison
next to the random placement algorithm with threshold 0.5 and ready-time placement algorithm
with threshold 0.9. The efficiency is calculated as follows: Efficiencyp =

Speedupp

p where p is

the number of cores (and workers) that are used.

32

CHAPTER 7

Conclusion

7.1 Discussion

The results of both placement schedulers are disappointing. They clearly perform worse than the
old implementation. The most striking observation to be made is that the performance does not
improve when the program runs on two workers instead of one. The reason for this is unclear.
Furthermore, the random placement algorithm with a threshold of 1 shows that the initial place-
ment is not working as well as expected. Certainly compared to the the implementation prior to
this research, where round-robin is used for initial placement, the results show that locality as
used in this research for the inital placement strategy, does not seem to play an important role
in the performance on shared memory machines.

This does not mean the use of locality could not improve the performance. The raytracer has
a clear preference in its program structure to put solvers on different cores. However, the initial
placement does not guarantee every solver will run on a different worker. It could be better
to place these solvers on workers that are not already running a solver. Here the placement
scheduler could play a role, the solvers could be pinned to some worker or at least have a very
low priority to be migrated and other tasks running next to these solvers could be divided by
the placement scheduler depending on which workers have less tasks to perform and which have
too much tasks to perform. This is already implemented in Distributed S-Net [6], but could also
be used for multi-core machines.

Furthermore, looking only at the time a task is ready, could be insufficient information to
make a good decision. For example there could be some computation heavy boxes running on a
worker and also some control tasks. These control tasks will then have a higher ready time then
the boxes. The average ready-time for control tasks is the time that the boxes are running (plus
some small control task running time), while for a box the average is taken over the time the
other boxes are running and the little time the control tasks are running, one box less is used for
the average ready-time which leads to control tasks having a higher ready-time than box tasks
and box tasks that are not migrated while control tasks are.

Another comparison to make is how intrusive the implementation of placement scheduler is
on the total performance. The placement scheduler had to block the complete scheduler queue
of a worker to be able to safely run its behaviour without any race conditions that could arise.
Comparing the performances where the program runs on one worker, the differences are not
significantly in favour of the previous implementation. This shows that although the placement
scheduler does not do any migrations, but does runs its behaviour, blocking the task queue has
little effect on the performance.

It is also clear that the raytracer input does not scale with the number of workers. Although
this does not explain the bad results for the placement scheduler, it does indicate that the full
computing potential of the machine not used.

One succes to note is that although the performance is not as what is expected, the ready-
time algorithm performs better than just choosing random tasks the migrate. This means that
it is beneficial to use some heuristic in a placement algorithm.

33

7.2 Future Research

Due to time constraints, it has not been possible to implement all the ideas. One aspect in
task migration that could be further researched is the knowledge about the program. Using the
content of records for example may further help in making a good decision about where to run
a task. Also locality is an aspect that has not been examined yet. Instead of migrating a single
box task it might be interesting to look at the performance of migrating parts of the network
that are close to the box task. Furthermore, as already disccused in section 7.1 certain parts of
a network could be pinned to a worker. In the raytracer example, the solvers could all be placed
on different workers to divide the heavy work over the different workers.

Another aspect that has shown importance in the results is the initial placement. Fur-
ther investigation should be done on what the influences are on initial work distribution. For
now round-robin performs better than what we implemented, the question is, is a method like
round-robin that arbitrarily distributes the work indeed a better implementation instead of using
heuristics about the program.

Moreover, distributed S-Net [6] has not been discussed here, but is also an interesting topic
for this research. As with migration over different cores, migration over different nodes to balance
the work might also increase the performance. One additional problem for distributed S-Net is
the communication time and moving complete parts of the network instead of one task might be
an interesting implementation for distributed S-Net.

34

Bibliography

[1] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. Shen, “Coming challenges in
microarchitecture and architecture,” Proceedings of the IEEE, vol. 89, pp. 325 –340, mar
2001.

[2] I. Bell, N. Hasasneh, and C. Jesshope, “Supporting microthread scheduling and synchroni-
sation in cmps,” International Journal of Parallel Programming, vol. 34, pp. 343–346, 2006.
10.1007/s10766-006-0017-y.

[3] L. Spracklen and S. Abraham, “Chip multithreading: opportunities and challenges,” in
High-Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium
on, pp. 248 – 252, feb. 2005.

[4] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvious,”
SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, Mar. 1995.

[5] C. Grelck, S. Scholz, and A. Shafarenko, “Asynchronous Stream Processing with S-Net,”
International Journal of Parallel Programming, vol. 38, no. 1, pp. 38–67, 2010.

[6] C. Grelck, J. Julku, and F. Penczek, “Distributed s-net: Cluster and grid computing with-
out the hassle,” in Cluster, Cloud and Grid Computing (CCGrid’12), 12th IEEE/ACM
International Conference, Ottawa, Canada, IEEE Computer Society, 2012.

[7] M. Verstraaten, “High-level programming of the single-chip cloud computer with s-net,”
masters thesis, University of Amsterdam, February 2012.

[8] F. Penczek, J. Julku, H. Cai, P. Hölzenspies, C. Grelck, S.-B. Scholz, and A. Shafarenko,
“S-net language report version 2.0,” Tech. Rep. 499, University of Hertfordshire, School of
Computer Science, April 2010.

[9] C. Grelck and S.-B. Scholz, “Sac: a functional array language for efficient multi-threaded
execution,” Int. J. Parallel Program., vol. 34, pp. 383–427, Aug. 2006.

[10] D. Prokesch, “A light-weight parallel execution layer for shared-memory stream processing,”
master’s thesis, Technischen Universität, Wien, February 2011.

[11] C. Grelck and F. Penczek, “Implementation Architecture and Multithreaded Runtime Sys-
tem of S-Net,” in Implementation and Application of Functional Languages, 20th Interna-
tional Symposium, IFL’08, Hatfield, United Kingdom, Revised Selected Papers (S. Scholz
and O. Chitil, eds.), vol. 5836 of Lecture Notes in Computer Science, pp. 60–79, Springer-
Verlag, 2011.

[12] B. Tika, “Work-distribution and load-balancing in distributed and parallel systems,” July
2011. Bachelors thesis.

[13] C. Lu and S. ming Lau, “A performance study on load balancing algorithms with task
migration,” in In Proceedings, IEEE TENCON, pp. 357–364, 1994.

[14] C. Grelck, S. Herhut, S.-B. Scholz, A. Shafarenko, J. Yang, C.-Y. Chen, and N. Bagherzadeh,
“S-net: Separation of concerns in message driven programming,”

35

[15] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in software,”
Dr. Dobb’s Journal, vol. 30, no. 3, 2005.

[16] C. Grelck, “The essence of synchronisation in asynchronous data flow,” in 25th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’11), Anchorage, USA,
IEEE Computer Society Press, 2011.

[17] “S-net home.” http://www.snet-home.org/?page_id=7.

[18] J. Robinson, S. Russ, B. Heckel, and B. Flachs, “A task migration implementation of the
message-passing interface,” in Proceedings of the 5th IEEE International Symposium on
High Performance Distributed Computing, HPDC ’96, (Washington, DC, USA), pp. 61–,
IEEE Computer Society, 1996.

[19] M. S. Squillante and R. D. Nelson, “Analysis of task migration in shared-memory multipro-
cessor scheduling,” SIGMETRICS Perform. Eval. Rev., vol. 19, pp. 143–155, Apr. 1991.

[20] “Pthreads.” https://computing.llnl.gov/tutorials/pthreads/.

36

http://www.snet-home.org/?page_id=7
https://computing.llnl.gov/tutorials/pthreads/

APPENDIX A

Raytracing

net raytracing_smp_dyn({scn_name, <x_res>,<y_res>,<nodes>,<tasks>,

<tokens>,<scheduler>,<done>,<rec>} -> ...)

{

box toStr((scn_name) -> (scn_name));

box t_start(() -> (time));

box splitter((<nodes>, <tasks>, <tokens>, <x_res>, <y_res>, <scheduler>)

-> (<nodes>, <tasks>, <task>, <node>, <x_res>, <y1>, <y2>, <y_res>,

<round>, <first>)

| (<nodes>, <tasks>, <task>, <node>, <x_res>, <y1>, <y2>, <y_res>,

<round>)

| (<nodes>, <tasks>, <task>, <x_res>, <y1>, <y2>, <y_res>,

<round>));

box solve((<x_res>, <y1>, <y2>, <y_res>, scn_name)

-> (<x_res>, <y1>, <y2>, <y_res>, r, g, b, scn_name));

net merge({<tasks>, <x_res>, <y1>, <y2>, <y_res>, r, g, b }

-> {<tasks>, <count>, <x_res>, <y_res>, R, G, B },

{<tasks>, <x_res>, <y1>, <y2>, <y_res>, r, g, b ,<first>}

-> {<tasks>, <count>, <x_res>, <y_res>, R, G, B }

)

{

box init((<x_res>, <y1>, <y2>, <y_res>, r, g, b ,<first>)

-> (<x_res>, <y_res>, R, G, B));

box merger((<x_res>, <y1>, <y2>, <y_res>, R, G, B, r, g, b)

-> (<x_res>, <y_res>, R, G, B));

} connect

((init .. [{<tasks>} -> if <tasks == 1>

then {<tasks>, <count=1>, <done>}

else {<tasks>, <count=1>}])

| [])

.. ([|{ R, G, B},{ <x_res>, <y1>, <y2>, <y_res>, r, g, b }|]

..(

(merger

.. [{<count>} -> {<count = count+1>}]

.. [{<tasks>, <count>} -> if <tasks == count>

then { <tasks>, <count>, <done>}

else { <tasks>, <count>}])

37

| [])

)*{<done>} ;

box genImg((R, G, B, <x_res>, <y_res>, scn_name, time) -> ());

} connect

toStr

.. t_start

.. splitter

.. [{<done>} -> {}]

.. (((solve

.. [{ <tasks>, <task>, <node>, <x_res>, <y1>, <y2>, <y_res>,

r, g, b, scn_name }

-> { <tasks>, <task>, <x_res>, <y1>, <y2>, <y_res>,

r, g, b, scn_name, <done> };

{ <node> }]

)!@<node>

| []

)

.. ([{<done>, <task>} -> {<done>,<task>}]

| [| {<task>}, { <node>} |]

)

) * {<done>}

.. [{<done>} -> {}]

.. merge

.. genImg;

38

APPENDIX B

Implementation feedback combinator

The feedback combinator is implemented in a different way as the other combinators as it consists
of multiple tasks. This chapter gives a small explanation what the feedback combinator looks
like.

The feedback combinator is divided into three different tasks. The first is FeedbackCallTask
which receives records from the input stream and records coming back from the feedback com-
binator. It sends the record to the box task, or to the lower network and the output of this box
or network is send to FeedbackDispTask. This task decides whether the output record is send
to the output stream or back into the feedback combinator. If it goes back to the input of the
feedback combinator, it is first send to the third task FeedbackBufTask which sends it back to
the FeedbackCallTask.

39

40

APPENDIX C

Implementation changes

• Init{FunctionName}: This is a new function for each entity (box and control tasks). The
function initializes some argument values, like the stream descriptors that are used by this
task.

• lpel_task_t: This structure has been extended with a few extra variables. The most
important variables are the integers current_worker and new_worker which containt the
indices of the current worker the task is running on and the worker the task should migrate
to. If they are the same, the task just goes on running.

• EntityTask This function has been changed. It is called by LPEL to run an entity. Now the
implementation is extended with a loop. The entity structure given as a parameter contains
a boolean. Before running this is set to zero, then the task is called. And if the boolean is
not set to true, the function stops and does a cleanup. The precise implementation can be
found in appendix ??.

• SNetThreadingInitSpawn This function is added to provide the initial spawn of a task.
Tasks that migrate, are newly created LPEL tasks, but continue computations done by a
previous task.

• SNetThreadingReSpawn This function is called after an entity task has finished an iteration
and has not terminated. It either sets the boolean used in EntityTask to true if the task
should keep running on the same worker, or create a new LPEL task on a different worker.

• SNetThreadingInitialWorker This function decides on which worker the entity should be
created. The second argument is an integer which defines what type the type of situation is
for that instance. Boxes are never set on a different worker than its parent so they initialize
with type 0. Most control tasks initialize with 1 which keeps the control task on the same
worker as its parent. For 2 the entity is put on a next worker. And finally 3 will put the
entity on the current worker.

• LpelStreamRead, LpelStreamWrite, LpelStreamPoll These functions have been changed
to make task migration more efficient. Stream descriptors are bound to a task, this is due
to the fact that when there is a read or write on a stream and the task has to wait on
the I/O, the task has to be switched and put on hold. The stream descriptor is used to
determine which task to put on hold. In the new implementation, a task can be spawned
and a new lpel_task is created, making the stream descriptor useless. To cope with this,
the function LpelTaskSelf is called in the given functions to determine which task is used
in the stream descriptor.

• LpelTaskCreate This function has an extra parameter to set the priority of the task.

41

	Introduction
	Background
	S-Net
	Type System
	Entities
	Network Combinators

	S-Net Implementation
	Runtime system
	Threading layer

	Related Work
	Static Load-Balancing
	Dynamic Load-Balancing
	Work Stealing

	Theoretical Objectives
	Migration framework
	Placement Scheduler
	Algorithms

	Implementation
	Migration framework implementation
	Placement Scheduler
	Implementation of the algorithms

	Evaluation
	Setup
	Raytracer
	Parameters placement schedulers
	Experiments

	Results

	Conclusion
	Discussion
	Future Research

	Raytracing
	Implementation feedback combinator
	Implementation changes

