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1

Introduction

The content of this thesis lies on the intersection of coalgebra, topology and modal logic.
A T-coalgebra is a pair (X,γ) where T is an endofunctor on some category C, X is

an object in C and γ ∶ X → TX is a morphism in C. The object X is also referred to as
the state space, γ as the structure map and the category C is called the base category
of the coalgebra (X,γ). Intuitively, the functor T captures the possible outcomes of the
structure map applied to a state, and the structure map γ describes the dynamics of the
coalgebra (X,γ).

Coalgebras come with their own generic notions of morphisms, bisimilarity and be-
haviour and hence are useful to reason about notions related to behaviour and obser-
vational indistinguishability. Although the definition of a coalgebra may seem rather
abstract, they model a wide variety of structures.

One of the simplest structures which can be described as a coalgebra is a Kripke
frame [34, 10]. Kripke frames correspond one-to-one with coalgebras for the powerset
functor P on Set, the category of sets and functions [1]. Moreover, the standard notion
of a morphism between Kripke frames corresponds precisely to P-coalgebra morphisms
and the coalgebraic definition of a bisimulation coincides with the recognised definition
of bisimulation from modal logic. Even in this simple setting where the base category is
Set, many other familiar structures can be viewed as coalgebras as well. Among these are
transition systems, non-wellfounded sets and deterministic automata [3, 48]. Set-based
coalgebras are also called systems and are well researched [49, 28, 48, 27].

The generality of the theory of coalgebra allows for results which are uniform in
T. Results on the level of coalgebra can then be applied to structures corresponding
to a particular choice of T. Besides, logic can be used as a tool for reasoning about
properties of coalgebras, such as bisimilarity. Moss was the first to generalise the concept
of modal logic from Kripke frames and models to coalgebraic logic for arbitrary set-
based coalgebras [43]. He used so-called relation liftings to define modal operators for
propositional logic. This triggered much more research in the area [24, 25, 47, 35, 21,
50, 22]. In [47] Pattinson introduces a different method for defining modal operators,
namely via predicate liftings. Coalgebraic logic for set-based coalgebras has been well
investigated and is still an active area of research [55, 56, 14, 38].

Coalgebras where the state space is not a set are also useful in modelling various phe-
nomena. For example, trace semantics for non-deterministic automata and context-free
grammars can be obtained by modelling these systems as coalgebras over the category
of sets and relations [23, 27], and the descriptive frames of modal logic are coalgebras
over the category Stone of Stone spaces and continuous functions [37]. Some advances
have been made on coalgebraic logic for coalgebras whose underlying spaces are Stone
spaces [16, 9]. Research about (logics for) coalgebras over arbitrary topological spaces

5



is more scarce, as observed in [44].
In this thesis we investigate coalgebras whose state space is a topological space, but

not necessarily a Stone space. That is, we let the base category be some full subcategory
of Top, the category of topological spaces and continuous functions. Firstly, this is mo-
tivated by mathematical curiosity. For instance, the aforementioned descriptive frames
are coalgebras for the Vietoris functor on Stone. But really, the Vietoris functor is de-
fined on the full category Top and can be restricted to Stone. This raises the question
what coalgebras look like for this definition of the Vietoris functor. Of course, there are
many more functors on Top whose coalgebras might be of interest. Secondly, in [44] it
is suggested that coalgebras over KHaus, the category of compact Hausdorff spaces and
continuous functions may be useful in economic theory.

The clopen sets of a Stone space are a subbase for the topology. Moreover, they form
a Boolean algebra, hence they are closed under taking complements, finite intersections
and finite unions. Therefore, if we use the clopen sets as the interpretants for propo-
sitional statements, the logic used to study Stone coalgebras, should contain negation,
conjunction and disjunction. Since the empty set serves as a bottom element, this logic
is just classical propositional logic. The method of predicate lifting then allows one to
define additional modal operators.

However, as soon as one leaves the realm of set- and Stone-based coalgebras, clas-
sical propositional logic seizes to be a suitable logic to build upon. This is, in part,
due to the fact that the open sets of a topological space, which are a natural choice
of the interpretants of propositional statements, are not generally closed under taking
complements. Therefore, the coalgebraic logic used to study coalgebras over arbitrary
topological spaces must be based on some language without negations. An immediate
question which arises is what logic we should use to build coalgebraic logic on for these
coalgebras.

One of the natural candidates for this logic is geometric logic. The language of geo-
metric logic is constructed from a set of propositional statements, arbitrary disjunctions
and finite conjunctions [59, 60, 61]. We will see that geometric logic can be viewed as
the logic of finite observations. Formulas of geometric logic can be interpreted in the
frame of open sets of a topological space. There is a duality between the category of
spatial frames and homomorphisms and the full subcategory of Top whose objects are
sober spaces, which is central to the theory of geometric logic [62].

We modify the method of predicate lifting [47] and use it to define modal operators
for geometric logic, which can then be interpreted in models based on coalgebras with
a topological space as state space. The duality between sober spaces and spatial frames
allows us to view problems from different perspectives. For example, the dual perspective
of an enfunctor T on Sob, the category of sober spaces and continuous functions, gives
rise to a concrete construction of a final coalgebra in Coalg(T).

The aim of this thesis is to develop a theoretical framework of coalgebraic geometric
logic. In particular, we investigate the notions of open predicate liftings, geometric
models, modal equivalence, bisimilarity and behavioural equivalence.

Outline of the thesis Chapter 2 sets the stage for the rest of the thesis; we fix
notation and introduce formally the structures that will play a role in later chapters.
It starts with the definition of a coalgebra, concrete examples of coalgebras, and the
notions of coalgebra bisimulation and behavioural equivalence. Subsequently, in section
2.2, we define models over set-based coalgebras and we introduce coalgebraic logic which
can be interpreted on these models. Furthermore, a different notion of bisimilarity, Λ-
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bisimilarity, is presented. In section 2.3 we change the base category of interest to the
category of Stone spaces and continuous functions. We generalise Λ-bisimilarity to a
notion of bisimilarity between models over Stone coalgebras and investigate how this
relates to modal equivalence and behavioural equivalence.

In chapter 3 we focus on coalgebras whose base category is a full subcategory of
Top. We start with the definition of geometric logic and thereafter define so-called
open predicate liftings and the coalgebraic geometric logic induced by a set of open
predicate liftings. The models that we use to interpret this logic are coalgebras with
a valuation. We investigate the relation between modal equivalence and behavioural
equivalence between such models. Subsequently, we study a concrete example of the
functor Dkh, the monotone functor on KHaus, and provide a dual description of this
functor in terms of frames, called Mkr. Finally, in section 3.4, we define Λ-bisimulations
and see how this relates to modal equivalence and behavioural equivalence.

Chapter 4 is devoted to lifting endofunctors from Set to other categories. In section
4.1 we show how one can lift a set functor together with a set of predicate liftings to
a sober functor, i.e. an endofunctor on the category of sober spaces and continuous
functions. We show that lifting the powerset functor and the monotone functor on
Set together with the usual set of predicate liftings yields the Vietoris functor and the
monotone functor on KHaus, respectively. The content of section 4.2 is similar to that of
section 4.1, but we lift functors to Stone instead. In section 4.3, a different method for
lifting a set functor to a Stone is given. We show that this coincides with the method
from section 4.2. This provides a partial solution to a question raised in the conclusion
of [36].

The final chapter of this thesis is a case study, where we put the developed theory
into practice. In section 5.1 we define so-called descriptive conditional frames. These
generalise conditional frames in the same manner descriptive general frames generalise
Kripke frames. We show that descriptive conditional frames are coalgebras for a certain
functor Cst on Stone, which arises as the lift of the conditional functor on Set. Moreover,
we provide an endofunctor on BA, the category of Boolean algebras and homomorphisms,
which is dual to Cst. Besides, we define the notion of descriptive conditional bisimilarity,
which turns out the be the equivalent to Λ-bisimilarity but differs in the fact that its
definition is structural, whereas Λ-bisimilarity is defined in a non-structural manner. In
section 5.2 we investigate geometric conditional frames. These are coalgebras for the
functor Ckh on KHaus, which arises from lifting the conditional functor on Set using the
method from section 4.1. We give an endofunctor on Frm and prove that its restriction
to KRFrm is dual to Ckh.

In appendix A.2 we give a different proof of the fact that Mkr from chapter 3 preserves
compactness, which does not depend on the duality with Dkh.

Most notable theorems

• In section 2.3 we define so-called Λ-bisimulations between models over Stone-
coalgebras. In propositions 2.29 and 2.34 and lemma 2.32 this notion is
related to modal equivalence and behavioural equivalence.

• In section 3.4 we define Λ-bisimulations between models for coalgebraic geometric
logic. Theorem 3.57 describes the relation of Λ-bisimilarity with modal equiva-
lence and behavioural equivalence.
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• For a certain class of set functors, there are two ways of lifting a set functor to a
Stone functor. Theorem 4.24 shows that these coincide on objects.

• We generalise the monotone functor (which is an endofunctor on Stone) to an
endofunctor on KHaus and give a description of its algebraic dual, which is an
endofunctor on Frm, in theorem 3.41. Similarly, we generalise the conditional
functor (on Set) to an endofunctor on KHaus in section 5.2 and show that it has a
dual functor on Frm in theorem 5.38.

• Descriptive conditional bisimilarity is a structural notion of bisimilarity between
descriptive conditional frames. Theorem 5.23 shows that descriptive conditional
bisimilarity, Λ-bisimilarity (for certain Λ), modal equivalence and behavioural
equivalence coincide.

• In chapter 3 we use duality to prove that the monotone functor M on Frm preserves
compactness. In theorem A.3 we give a proof of this fact which only plays on
the frame side and does not use the duality with Dkh.

Prerequisites We assume familiarity with basic topology and category theory. Excel-
lent references for these topics are [5, 45, 40]. Furthermore, familiarity with modal logic
will be helpful in providing intuition. We refer to [10] for an outstanding introduction
to basic modal logic. Besides, the reader is advised to have a look at section A.1, where
notational conventions are explained.
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2

Coalgebras and coalgebraic logic

This chapter sets the stage for the rest of the thesis. We present mostly known facts
about coalgebra and coalgebraic logic. The main purpose is to fix notation and, through
examples, introduce some structures that will play a role in later chapters. We assume
familiarity with basic category theory, as standard reference we use [40].

Section 2.1 introduces coalgebras and related concepts of equivalence for an arbitrary
category C. Some concrete and some more abstract examples are given. Section 2.2 fo-
cusses on the case C = Set and introduces coalgebraic logic for set-coalgebras. Section 2.3
concentrates on the case C = Stone and coalgebraic logic for Stone-coalgebras. So-called
Λ-bisimulations are introduced, which are a straightforward generalisation from the same
notion on set coalgebras [6], and various notions of equivalence between coalgebras are
compared.

2.1 Coalgebras

In this section we define coalgebras and corresponding notions of equivalence. We also
give a number of illustrative examples. For a thorough (yet accessible) introduction to
the theory of coalgebras we refer to [27, 49, 28].

2.1 Definition. Let C be a category and T an endofunctor on C. A T-coalgebra
is a pair (X,γ) where X is an object in C, also referred to as the state space, and
γ ∶ X → TX is a morphism in C, known as the transition map or structure map. A
T-coalgebra morphism between two T-coalgebras (X,γ) and (X ′,γ′) is a morphism
f ∶X →X ′ in C such that the following diagram commutes:

X X ′

TX TX ′

f

γ γ′

Tf

The collection of T-coalgebras and T-coalgebra morphisms forms a category, which we
shall denote by Coalg(T). The category C is called the base category of Coalg(T). ◁

If the functor T is clear from the context, we will simply refer to (X,γ) as a coalgebra
and to f as a coalgebra morphism or a coalgebra map. In case T is an endofunctor on
Set, T-coalgebras are also known as systems. The standard reference for the theory of
systems is [49].

Many known structures can be viewed as a coalgebra. We give some examples.
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2.2 Example (Transition systems). Consider the following example of a transition
system. Here x1,x2,x3 represent states and the arrows describe the relation between
these states.

x1

x2

x3

This can be viewed as a P-coalgebra (X,γ) with state space X = {x1,x2,x3} and tran-
sition map γ ∶ X → PX given by γ(x1) = {x2,x3}, γ(x2) = {x1,x3} and γ(x3) = ∅. The
coalgebra (X,γ) then encodes all information of the transition system, that is, given
(X,γ) we can recover the given transition system.

In general, transition systems are pairs (X,R) where X is a set and R ⊆ X ×X a
relation on X. A transition system (X,R) corresponds to the P-coalgebra (X,γ) where
γ ∶ X → PX ∶ x ↦ {x′ ∈ X ∣ xRx′}. Conversely, every P-coalgebra (X,γ) gives rise to a
transition system (X,R) with R ⊆X ×X defined by xRx′ iff x′ ∈ γ(x). These construc-
tions give a one-to-one correspondence between transition systems and P-coalgebras. ◁

2.3 Example (Labelled transition systems). Let us fix a set of labels A and label the
transition system from the previous example with a1, . . . ,a4 ∈ A.

x1

a2

x2a1 a3

x3

a4

The result is a labelled transition system (LTS). To make this into a coalgebra we need
to adapt our functor. Let Lab ∶ Set→ Set be the functor defined by

LabX = P(A ×X)

for a set X and
Lab(f)(V ) = {(a, f(x)) ∣ (a,x) ∈ V }

for functions X →X ′ and V ∈ P(A ×X).
The information of the LTS can be encoded as a Lab-coalgebra as follows: let X =

{x1,x2,x3} and define γ ∶X → LabX by

γ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 ↦ {(a2,x2), (a4,x3)}
x2 ↦ {(a1,x1), (a3,x3)}
x3 ↦ ∅

.

Then (X,γ) corresponds to the LTS above, i.e. we can retrieve the given LTS from
(X,γ).

More generally, a labelled transition system with labels in A is a pair (X,→) where
X is a set and → ⊆X ×A×X a labelled transition map. An LTS (X,→) corresponds to
the Lab-coalgebra (X,γ) where γ is defined by γ(x) = {(a,x′) ∈ A ×X ∣ (x,a,x′) ∈ →}.
Conversely, given a Lab-coalgebra (X,γ) we can retrieve the LTS corresponding to it by
defining → ⊆X×A×X by (x,a,x′) ∈→ iff (a,x′) ∈ γ(x). This gives a 1-1 correspondence
between labelled transition systems with labels in A and Lab-coalgebras. For details see
example 2.1 in [49]. ◁
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2.4 Example (Weighed transition systems). Suppose we only want to look at labelled
transition systems with labels in the set R≥0 such that for each state x the sum of the
labels of all outgoing arrows is equal to some fixed n ∈ R≥0. Then we have to modify our
functor Lab to Labn ∶ Set→ Set, defined on objects by

LabnX = {V ⊆ R≥0 ×X ∣∑{a ∣ ∃x ∈X with (a,x) ∈ V } = n}.

For a function f ∶X →X ′ and V ∈ LabnX let

Labn(f)(V ) = {(bx, f(x)) ∣ (a,x) ∈ V and bx =∑{c ∣ (c,x) ∈ V }}.

It is an easy exercise to see that the aforementioned LTSs correspond precisely to Labn-
coalgebras. ◁

2.5 Remark. Lab1-coalgebras are precisely discrete time Markov chains (cf. [33, 46]).
A slightly different functor to make Markov chains coalgebraic and many more examples
of coalgebras of probabilistic systems can be found in [52].

2.6 Example (Kripke frames). In modal logic, the transition systems of example 2.2 are
better known as Kripke frames. The standard notion of morphisms between Kripke
frames (X,R) and (X ′,R′) is that of a bounded morphism: a set-map f ∶ X → X ′ is a
bounded morphism if for all x, y ∈X and z′ ∈X ′ we have

(i) Rxy implies R′f(x)f(y); and

(ii) R′f(x)z′ implies that there exists z ∈X with Rxz and f(z) = z′.

It is not hard to show that f is a bounded morphism from (X,R) to (X ′,R′) iff it is a
coalgebra morphism between the corresponding P-coalgebras. This yields the following
isomorphism of categories

Krip ≅ Coalg(P),

where Krip denotes the category of Kripke frames and bounded morphisms. ◁

Kripke frames play an important role in modal logic as they are the structures used
to interpret basic modal logic. The following two examples are the structures that
correspond to monotone modal logic and conditional logic. These will be key ingredients
in guiding examples in subsequent chapters.

2.7 Example (Monotone frames). A monotone frame is a pair (X,γ) where X is a
set and γ ∶ X → P̆(P̆X) is a monotone neighbourhood function. That is, γ assigns
to each state x ∈ X a collection of subsets of X, called neighbourhoods of x, and
whenever a ∈ γ(x) and a ⊆ b ⊆ X, we have b ∈ γ(x). A bounded morphism between
monotone frames (X,γ) and (X ′,γ′) is a map f ∶ X → X ′ such that for all x ∈ X and
a′ ⊆X ′ we have f−1[a′] ∈ γ(x) iff a′ ∈ γ′(f(x)).

Monotone frames are coalgebras for the functor D ∶ Set→ Set given by

DX = {W ⊆ PX ∣ if a ∈W and a ⊆ b then b ∈W}.

For a morphism f ∶X →X ′ define

Df ∶ DX → DX ′ ∶W ↦ {a′ ∈ PX ′ ∣ f−1(a′) ∈W}.

The bounded morphisms correspond precisely to coalgebra morphisms [21, 20, 13]. ◁
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In literature, morphisms between Kripke frames and morphisms between monotone
frames are both called bounded morphisms. It will always be clear from the context
which notion of bounded morphisms we mean.

Our next example will be that of conditional frames and conditional frame mor-
phisms. One may find various definitions of conditional frames in the literature [38, 7, 13].
However, conditional frame morphisms have not been defined. In order to avoid confu-
sion let us define the notion of conditional frames, taken from [7], and the corresponding
morphisms that we will use here.

2.8 Definition. A conditional frame is a pair (X,ν) whereX is a set and ν ∶X×PX →
PX a function that satisfies for all x ∈X and a, b ∈ PX

(i) if a ∩ b = ∅, then ν(x,a) ∩ b = ∅; and

(ii) if a ⊆ b and ν(x, b) ⊆ a then ν(x,a) = ν(x, b).

A map f ∶ X → X ′ is a conditional frame morphism between conditional frames
(X,ν) and (X ′,ν′) if for all x ∈X and a′ ⊆X ′,

f[ν(x, f−1(a′))] = ν′(f(x),a′). (2.1)

This definition is motivated by the fact that f is a conditional frame morphism iff the
following diagram commutes,

PX PX ′

PX PX ′

ν(x,−)

f−1

ν′(f(x),−)

f[−]

We write CF for the category of conditional frames and conditional frame morphisms. ◁

2.9 Remark. Condition (i) in the previous definition can be reformulated as ν(x,a) ⊆ a.
Therefore our conditions are equivalent to the ones in definition 1 of [7]. We have chosen
this slightly altered formulation in view of chapter 5, where they make a difference when
dealing with geometric conditional frames.

Let us adopt a coalgebraic perspective on conditional frames and their morphisms.

2.10 Example (Conditional frames). Conditional frames are coalgebras for the functor
C. For a set X, CX is the collection of functions h ∶ PX → PX that satisfy

(C1) if a ⊆X then h(a) ⊆ a; and

(C2) if a ⊆ b ⊆X and h(b) ⊆ a then h(a) = h(b).

For a function f ∶ X → X ′ define Cf ∶ CX → CX ′ by Cf(h)(a) = f[h(f−1(a))]. We
need to check that this is a well-defined functor, i.e. Cf(h) ∈ CX ′ for h ∈ C. For (C1),
let a ⊆X ′, then

Cf(h)(a) = f[h(f−1(a))] ⊆ f[f−1(a)] ⊆ a.

For (C2), assume a ⊆ b and Cf(h)(b) ⊆ a. We need to show that Cf(h)(a) = Cf(h)(b).
Since a ⊆ b we know f−1(a) ⊆ f−1(b) and because Cf(h)(b) = f[h(f−1(b))] ⊆ a we know
h(f−1(b)) ⊆ f−1(a). Now we may apply (C2) to CX to find h(f−1(a)) = h(f−1(b)),
from which it follows that

Cf(h)(a) = f[h(f−1(a))] = f[h(f−1(b))] = Cf(h)(b).

12



So C is well defined on morphisms.
There is an isomorphism CF ≅ Coalg(C) which is given on objects by observing that

functions X ×PX → PX satisfying (i) and (ii) from definition 2.8 correspond one-to-one
with elements of the set CX. Furthermore, conditional frame morphisms are tailored to
coincide with C-coalgebra morphisms. It is routine to check the details. ◁

2.11 Remark. If we omit (i) and (ii) from definition 2.8 we get the definition of a
selection function frame. These are known to be coalgebraic [38]. Although the
authors only consider the frames, not the morphisms, it is easy to see that the above
notion of a morphism is precisely a coalgebra morphism for the functor given in [38].

More examples showcasing the wide scope of coalgebra can be found in a variety of
areas such as biology [65], economics [44] and quantum computing [2, 26].

There are two standard notions of equivalence for coalgebras: coalgebra bisimilarity
and behavioural equivalence. It is a well-known fact that these two notions coincide for
many choices of the functor T, namely if T preserves weak pullbacks. These notions will
be used throughout this thesis.

2.12 Definition. Let C be a category which has products and a forgetful functor Y ∶
C → Set. Let T be an endofunctor on C, let (X,γ) and (X ′,γ′) be T-coalgebras, and
let x ∈ YX and x′ ∈ YX ′. The states x and x′ are called behaviourally equivalent,
x ≃ x′, if there exist a coalgebra (Y , δ) and coalgebra morphisms f ∶ (X,γ)→ (Y , δ) and
f ′ ∶ (X ′,γ′)→ (Y , δ) such that f(x) = f ′(x′).

Let B be an object in C such that YB ⊆ YX ×YX ′, with projections π ∶ B →X and
π′ ∶ B → X ′. B is called a coalgebra bisimulation or Aczel-Mendler bisimulation
between (X,γ) and (X ′,γ′) if there exists a transition map β ∶ B → TB that makes π
and π′ coalgebra morphisms. That is, β is such that the following diagram commutes:

X B X ′

TX TB X ′

γ

π π′

β γ′

Tπ Tπ′

Two states x ∈ UX,x′ ∈ UX ′ are called bisimilar, notation x - x′, if they are linked by
a coalgebra bisimulation. ◁

Finally, recall the definition of a final object in a category.

2.13 Definition. An object X in a category C is called final if for all objects X ′ in C
there exists a unique morphism f ∶ X ′ → X. A T-coalgebra is called final if it is a final
object in Coalg(T). ◁

Let T ∶ C → C be a functor and suppose the category Coalg(T) has a final object
(Z, ζ). For each object X = (X,γ) in Coalg(T) let fX ∶ X → Z be the unique coalgebra
map to (Z, ζ). Then it is an easy consequence of finality of (Z, ζ) that two states x
and x′ in two coalgebras (X,γ) and (X ′,γ′) are behaviourally equivalent if and only
if fX(x) = fX′(x′). In fact, originally, behavioural equivalence was only defined for
categories with a final object; two states were called behaviourally equivalent if they
were mapped to the same element under the unique maps to the final object. Definition
2.13 is equivalent to this one in case the category has a final object, but can also be used
for categories without a final object.
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2.2 Set-based coalgebraic logic

In this section we briefly describe how set-based coalgebras relate to logic. Much more
information can be found in e.g. [38, 55, 39, 14]. We start by introducing the idea of
a so-called predicate lifting, corresponding language, and models for interpreting this
language. Thereafter a different notion of bisimulation is given and some examples are
examined.

2.14 Definition. Let T be an endofunctor Set. A predicate lifting for T of arity n is
a natural transformation

λ ∶ P̆n → P̆ ○T.

The dual of an n-ary predicate lifting λ is given by

λ∂X ∶ P̆nX → P̆X ∶ (a1, . . . ,an)↦ TX ∖ λ(X ∖ a1, . . . ,X ∖ an).

A collection Λ of predicate liftings for T is called a similarity type (for T), and is said
to be closed under duals if λ ∈ Λ implies λ∂ ∈ Λ. A similarity type Λ is separating
for T if for all sets X and all distinct x,x′ ∈ TX there exists a λ ∈ Λ and a1, . . . ,an ∈ P̆X
such that precisely one of x,x′ belongs to the set λX(a1, . . . ,an). ◁

Fix a set Φ of proposition letters.

2.15 Definition. Let T be a functor on Set. A T-model is a triple X = (X,γ,V )
where (X,γ) is a T-coalgebra and V ∶ Φ → PX is a valuation. A T-model morphism
f from (X,γ,V ) to (X ′,γ′,V ′) is a T-coalgebra morphism f ∶ (X,γ) → (X ′,γ′) such
that f−1 ○V ′ = V . The collection of T-models and T-model morphisms forms a category,
Mod(T).

An Aczel-Mendler bisimulation between two T-models is an Aczel-Mendler bisim-
ulation between the underlying T-coalgebras such that for all (x,x′) ∈ B and p ∈ Φ,
x ∈ V (p) iff x′ ∈ V ′(p). ◁

Every similarity type induces a modal language that we can interpret on T-models.

2.16 Definition. The language induced by the similarity type Λ is the set L(Λ) of
formulas defined by

ϕ ∶∶= � ∣ p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ♡λ(ϕ1, . . . ,ϕn),

where p ∈ Φ and λ ∈ Λ is n-ary. The symbols ⊺, ∨, → and ↔ denote the usual abbre-
viations. The semantics of ϕ ∈ L(Λ) on a T-model X = (X,γ,V ) is given inductively
by

JpKX = V (p), Jϕ1 ∧ ϕ2KX = Jϕ1KX ∩ Jϕ2KX, J¬ϕKX =X ∖ JϕKX,

J♡λ(ϕ1, . . . ,ϕn)KX = γ−1(λ(Jϕ1KX, . . . , JϕnKX)),

where p ∈ Φ and λ ranges over Λ. ◁

Besides Aczel-Mendler bisimulations, other notions of bisimulations between T-co-
algebras and T-models have been proposed and linked to modal equivalence and be-
havioural equivalence. We content ourselves with stating the definition of a so-called
Λ-bisimulation for future reference, and refer to [17, 6, 22] for more information.
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2.17 Definition. Let B ⊆ X ×X ′ be a relation. A pair (a,a′) ∈ PX × PX ′ is called
B-coherent if B[a] ⊆ a′ and B−1[a′] ⊆ a. ◁

Properties of coherent pairs of sets may be found in [22]. We prove one property
which is not in [22] for future reference.

2.18 Lemma. Let B ⊆ X × X ′ be a relation and (a,a′) a B-coherent pair. Then
(X ∖ a,X ′ ∖ a′) is B-coherent.

Proof. Assume towards a contradiction that B[X ∖a] /⊆X ′ ∖a′, then B[X ∖a]∩a′ ≠ ∅,
so some element in X ∖ a is related to an element in a′. But then B−1[a′] /⊆ a, a
contradiction. Therefore we must have B[X ∖ a] ⊆ X ′ ∖ a′. In a similar way it can be
shown that B−1[X ′ ∖ a′] ⊆X ∖ a.

2.19 Definition. Let T be a set functor, i.e. an endofunctor on Set, Λ a collection
of predicate liftings for T and (X,γ,V ) and (X ′,γ′,V ′) two T-models. A relation B ⊆
X × X ′ is called a Λ-bisimulation if for all λ ∈ Λ, (x,x′) ∈ B and B-coherent pairs
(ai,a′i) we have

• x ∈ V (p) iff x′ ∈ V ′(p);

• γ(x) ∈ λX(a1, . . . ,an) iff γ′(x′) ∈ λX′(a′1, . . . ,a′n).

Two states are called Λ-bisimilar if they are linked by a Λ-bisimulation. ◁

The remainder of this section is devoted to examples.

2.20 Example (Normal modal logic). In example 2.6 we showed that P-coalgebras
correspond precisely to Kripke frames. Define λ◻ ∶ P̆→ P̆○P by λ◻X(a) = {b ∈ PX ∣ b ⊆ a}
and set Λ = {λ◻}. Then L(Λ) is the standard relational semantics for modal logic. We
write ◻ instead of ♡λ◻ . If X = (X,γ,V ) is a Kripke model (a P-model) and ϕ ∈L(Λ) is
a formula, then

J◻ϕKX = {x ∈X ∣ γ(x) ⊆ JϕKX},

so X,x ⊩ ◻ϕ iff for all y ∈ γ(x) we have X, y ⊩ ϕ. This yields the usual Kripke semantics
of modal logic [10].

It is an easy exercise to show that {λ◻}-bisimilar states satisfy precisely the same
formulas. Moreover, every Kripke bisimulation is also a {λ◻}-bisimulation [6, Example
3.3]. ◁

2.21 Example (Monotone modal logic). Example 2.7 shows that monotone frames are
D-coalgebras. Define λ◻ ∶ P̆ → P̆ ○ D by λ◻X(a) = {W ∈ DX ∣ a ∈ W} and set Λ = {λ◻}.

Then L(Λ) is the standard semantics of modal logic. Write ◻ for ♡λ◻ . If X = (X,γ,V ) is
a neighbourhood model and ϕ a formula in L(Λ) then, similar to the previous example,
we have X,x ⊩ ◻ϕ iff JϕKM ∈ γ(x). This yields the usual monotone semantics of modal
logic [20, 21, 13]. As in the previous example, {λ◻}-bisimilar states satisfy precisely the
same formulas. ◁

Next, we will look at conditional logic. Conditional logic provides an example of a
non-monotone modality: the conditional implication, ⇒. The modality ⇒ is meant to
express a notion of conditionality which in general is different from the usual implication
→. A formula ϕ1 ⇒ ϕ2 should be read as “If ϕ1 is the case, then usually ϕ2 is the case.”
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For an example, suppose Morty usually visits his grandpa Rick on Fridays. This can be
formalised as

Friday⇒ visit Rick.

However, if Morty is ill he will not visit his grandpa, so

Friday ∧ ill⇒ ¬(visit Rick).

The non-monotonicity shows itself in the fact that the conclusion is not maintained if
more information becomes available. For more information on conditional logic, see
[13, 4, 42, 51, 7, 11].

2.22 Example (Conditional logic). The language of conditional logic is given by

ϕ ∶∶= � ∣ p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ⇒ ϕ2,

with p ∈ Φ. We abbreviate ∨ and ⊺ as usual, and let ϕ1 ⇓ ϕ2 ∶= ¬(ϕ1 ⇒ ¬ϕ2). A
possible way to read ϕ1 ⇒ ϕ2 is as: “If ϕ1 holds, then usually ϕ2 holds as well.” On
a conditional model (viewed as C-model, cf example 2.10) X = (X,γ,V ), truth of the
proposition letters and of the Boolean cases is treated as usual. Truth of the implication
is given by

X,x ⊩ ϕ1 ⇒ ϕ2 iff γ(x)(Jϕ1KX) ⊆ Jϕ2KX.

and consequently X,x ⊩ ϕ1 ⇓ ϕ2 iff γ(x)(Jϕ1KX) ∩ Jϕ2KX ≠ ∅. The intuition behind this
is that the function γ(x) ∶ PX → PX indicates for each set a ⊆ X the relevant states in
a. We say that a state x satisfies ϕ1 ⇒ ϕ2 if the relevant states of Jϕ1KX as seen from x,
are all contained in Jϕ2KX.

Define λ⇒ ∶ P̆2 → P̆ ○C by λ⇒(a, b) = {h ∶ PX → PX ∣ h(a) ⊆ b}. Then

X,x ⊩ ϕ1 ⇒ ϕ2 iff γ(x) ∈ λ⇒(Jϕ1KX, Jϕ2KX).

This yields conditional semantics [7, 13]. Additionally we may define λ⇓ ∶ P̆2 → P̆ ○ C
by λ⇓(a, b) = {h ∶ PX → PX ∣ h(a) ∩ a ≠ ∅}. Then we have X,x ⊩ ϕ1 ⇓ ϕ2 iff γ(x) ∈
λ⇓(Jϕ1KX, Jϕ2KX). ◁

2.23 Remark. The introduction of the modality ⇓ may seem superfluous at this point.
Indeed, it is only an abbreviation so we don’t really need a predicate lifting to describe
its truth. However, it turns out to be useful when generalising conditional logic for
Stone-coalgebras in section 5.1. Besides, when dealing with geometric conditional logic
(section 5.2) the modalities ⇒ and ⇓ will no longer be mutually expressible, but relate
via a weaker relational.

More examples of the interplay between logic and set-coalgebras can be found in [38].

2.3 Stone-based coalgebraic logic

The final section of this chapter is devoted to logic on Stone-coalgebras. Analogously
to the set case, we define so-called clopen predicate liftings, a language, and models
for interpreting this language. We then show that, provided Λ is a characteristic set of
predicate liftings, the notions of modal equivalence and behavioural equivalence coincide.
Thereafter, Λ-bisimulations for models on Stone coalgebras are introduced. The section
closes with two examples of well-known Stone-coalgebras which occur in modal logic.
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2.24 Definition. Let T be an endofunctor on Stone. A clopen predicate lifting of
arity n is a natural transformation

λ ∶ Clpn → Clp ○T.

A clopen predicate lifting is said to be monotone if for all topological spaces X and
all a1, . . . ,an, b1, . . . , bn ∈ Clp(X), if ai ⊆ bi for all 1 ≤ i ≤ n, then λX(a1, . . . ,an) ⊆
λX(b1, . . . , bn). The dual of a clopen predicate lifting λ is given by λ∂X(a1, . . . ,an) ∶=
TX ∖ λ(X ∖ a1, . . . ,X ∖ an). A collection Λ of predicate liftings for T is said to be
characteristic if for every Stone space X the collection

{λX(a1, . . . ,an) ∣ λ ∈ Λ,ai ∈ ClpX}

forms a subbase for the topology on TX. ◁

The condition for a collection of predicate liftings to be characteristic can be regarded
as the topological counterpart of being separated.

2.25 Remark. In [16] the authors define a topological predicate lifting as the Stone
space variation of a predicate lifting. A topological predicate lifting for a Stone
functor T is a natural transformation

λ ∶ P̆n ○U→ P̆ ○U ○T

such that for all Stone spaces X and a1, . . . ,an ∈ ClpX the set λX(a1, . . . ,an) is clopen
in TX. Although λX(a) is defined for all subsets a ⊆ X, the only information that is
used in the semantics of the language is the action of λX on the clopens of X.

If λ ∶ P̆ ○U→ P̆ ○U ○T is a (unary) topological predicate lifting then we can obtain a
clopen predicate lifting λr by restricting for each Stone space X the map λX to ClpX. By
definition of a topological predicate lifting we have λrX(a) ∈ Clp(TX) for all a ∈ ClpX, so
λrX is indeed a map to Clp(TX). Naturality of λr follows immediately from the naturality
of λ. For every Stone space X the action of λX and λrX on clopens of X is the same.

The n-ary case is similar. So every topological predicate lifting yields a clopen
predicate lifting which gives the same language and semantics.

We have not found a converse, i.e., a way to turn each open predicate lifting into
a topological predicate lifting. Nor have we found a counterexample that this is not
possible. We leave this as an interesting open question.

2.26 Definition. Let T be a functor on Stone. A T-model is a triple X = (X,γ,V ) where
(X,γ) is a T-coalgebra and V ∶ Φ → ClpX is an admissible valuation of the proposition
letters. A T-model morphism from (X,γ,V ) to (X′,γ′,V ′) is a T-coalgebra morphism
f ∶ (X,γ) → (X′,γ′) such that f−1 ○ V ′ = V . The collection of T-models and T-model
morphisms forms a category, called Mod(T).

An Aczel-Mendler bisimulation between two T-models is an Aczel-Mendler bisim-
ulation between the underlying T-coalgebras such that for all (x,x′) ∈ B and p ∈ Φ,
x ∈ V (p) iff x′ ∈ V ′(p). ◁

2.27 Definition. The language induced by a collection of clopen predicate liftings Λ
is the set L(Λ) of formulas

ϕ ∶∶= � ∣ p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ♡λ(ϕ1, . . . ,ϕn),
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where p ∈ Φ and λ ∈ Λ is n-ary. The symbols ⊺, ∨, → and ↔ denote the usual abbre-
viations. The semantics of ϕ ∈ L(Λ) on a T-model X = (X,γ,V ) is given inductively
by

JpKX = V (p), Jϕ1 ∧ ϕ2KX = Jϕ1KX ∩ Jϕ2KX, J¬ϕKX =X ∖ JϕKX,

J♡λ(ϕ1, . . . ,ϕn)KX = γ−1(λ(Jϕ1KX, . . . , JϕnKX)).

A formula ϕ is called valid on Mod(T) if for every T-model X = (X,γ,V ) and all x ∈ X
we have X,x ⊩ ϕ. Denote the collection of valid formulas of L(Λ) by Log(T, Λ).

Two states x and x′ in two T-models X and X′ are called modally equivalent,
notation x ≡Λ x

′, if for all ϕ ∈L(Λ), X,x ⊩ ϕ⇔ X′,x′ ⊩ ϕ. ◁

2.28 Proposition. Let T be an endofunctor on Stone, Λ a set of predicate liftings for
T and f a T-model morphism from X = (X,γ,V ) to X′ = (X′,γ′,V ′). Then

X,x ⊩ ϕ iff X′, f(x) ⊩ ϕ.

Proof. The proof of this lemma is similar to the proof of proposition 3.20, which is in
turn similar to the proof of theorem 6.17 in [56].

The next theorem connects behavioural equivalence to modal equivalence. The proof
is inspired by theorem 4.1 in [16].

2.29 Proposition. Let T be an endofunctor on Stone and Λ a characteristic set of
predicate liftings for T. Let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be two T-models and
x ∈ X, x′ ∈ X′ states in these models. Then x and x′ are modally equivalent if and only
if they are behaviourally equivalent.

Proof. Our strategy to prove this proposition is to construct a final coalgebra of theories
and then exploit that two states are behaviourally equivalent if and only if their theories
are the same.

Let Z be the collection of maximal satisfiable sets of formulas of L(Λ), with a
topology generated by the clopen subbase {ϕ̃ ∣ ϕ ∈ CL}, where ϕ̃ = {Γ ∈ Z ∣ ϕ ∈ Γ}.
By definition Z is (homeomorphic to) the dual Stone space of the Lindenbaum-Tarski
algebra of Log(T, Λ), so every clopen set is of the form ϕ̃ for some ϕ ∈L(Λ).

For every T-model X = (X,γ,V ) define a map

thX ∶ X→ Z ∶ x↦ {ϕ ∣ X,x ⊩ ϕ}.

2.29.A Claim. Let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be two T-models, x ∈ X,x′ ∈ X′.
If thX(x) = thX′(x′) then T thX(γ(x)) = T thX′(γ′(x′)).

Proof of claim. Suppose T thX(γ(x)) ≠ T thX′(γ′(x′)), then there exists a clopen set
c ∈ Clp(TZ) such that T thX(γ(x)) ∈ c and T thX′(γ′(x′)) ∉ c. Since Λ is characteristic
for T and every clopen set of Z is of the form ϕ̃, there exist λ ∈ Λ and ϕ̃1, . . . , ϕ̃n such
that T thX(γ(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n) ⊆ c.

Observe th−1
X (ϕ̃i) = JϕiKX for 1 ≤ i ≤ n. The fact that T thX(γ(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n)

and naturality of λ yield

γ(x) ∈ (T thX)−1(λZ(ϕ̃1, . . . , ϕ̃n)) = λX(th−1
X (ϕ̃1), . . . , th−1

X (ϕ̃n)) = λX(Jϕ1KX, . . . , JϕnKX)

and similarly γ′(x′) ∉ λX′(Jϕ1KX, . . . , JϕnKX). Therfore X,x ⊩ ♡λ(ϕ1, . . . ,ϕn) and X′,x′ /⊩
♡λ(ϕ1, . . . ,ϕn), so thX(x) ≠ thX′(x′). This proves the claim. ◇
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Let Γ ∈ Z and let (X,x) be a pointed T-model such that thX(x) = Γ. Such a pointed
model always exists because the elements of Z are assumed to be satisfiable. Define
ζ(Γ) ∶= T thX(γ(x)). This gives rise to a map

ζ ∶ Z→ TZ

which by the previous claim is well-defined, because it does not depend on the choice of
the pointed model (X,x). Moreover, we argue that ζ is continuous:

2.29.B Claim. The map ζ ∶ Z→ TZ is continuous.

Proof of claim. Since Λ is characteristic it suffices to show that ζ−1(λZ(ϕ̃1, . . . , ϕ̃n)) is
open in Z for λ ∈ Λ and ϕ̃1, . . . , ϕ̃n ∈ ClopZ. Fix such a λ and ϕ̃1, . . . , ϕ̃n. We will show
that

ζ−1(λZ(ϕ̃1, . . . , ϕ̃n)) = ♡λ(ϕ1, . . . ,ϕn)
:

.

For Γ ∈ Z, let (X,x) be a pointed T-model with thX(x) = Γ. Then

ζ(Γ) ∈ λZ(ϕ̃1, . . . , ϕ̃n)⇔ T thX(γ(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n)
⇔ γ(x) ∈ λX(th−1

X (ϕ̃1), . . . , th−1
X (ϕ̃n))

⇔ γ(x) ∈ λX(Jϕ1KX, . . . , JϕnKX)
⇔ X,x ⊩ ♡λ(ϕ1, . . . ,ϕn)
⇔ ♡λ(ϕ1, . . . ,ϕn) ∈ thX(x)
⇔ ♡λ(ϕ1, . . . ,ϕn) ∈ Γ

⇔ Γ ∈ ♡λ(ϕ1, . . . ,ϕn)
:

.

This proves continuity of ζ. ◇

We have established that (Z, ζ) is a T-coalgebra. Endow (Z, ζ) with the valuation
VZ ∶ Φ→ ClopZ ∶ p↦ p̃. By construction each map thX is a T-model morphism. It then
follows that Z, Γ ⊩ ϕ iff ϕ ∈ Γ: the case ϕ = p holds by definition of VZ, the Boolean cases
follow by an easy induction, and the case ϕ = ♡λ(ϕ1, . . . ,ϕn) follows from the proof of
the previous claim. In addition, Z is final.

2.29.C Claim. The T-model Z = (Z, ζ,VZ) is final in Mod(T).

Proof of claim. Let X = (X,γ,V ) be any T-model and f ∶ X → Z a T-model morphism.
It follows from proposition 2.28 that for all x ∈ X we have X,x ⊩ ϕ iff Z, f(x) ⊩ ϕ iff
ϕ ∈ f(x), so f(x) = thX(x) hence f = thX. ◇

The proposition now follows: suppose x and x′ are modally equivalent, then thX ∶
X→ Z and thX′ ∶ X′ → Z′ are T-model morphisms such that thX(x) = thX′(x′), so x and
x′ are behaviourally equivalent. Conversely, if x and x′ are behaviourally equivalent,
then we must have thX(x) = thX′(x′) so by proposition 2.28 x ≡Λ x

′.

We will now define a notion of bisimulation between models and relate this to modal
equivalence and behavioural equivalence. The following definition of Λ-bisimulation is
an adaptation of ideas in [6, 17].
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2.30 Definition. Let T be an endofunctor on Stone and Λ a collection of predicate
liftings for T. Let (X,γ) and (X′,γ′) be T-coalgebras and B ⊆ X ×X′ be a subspace
with projections π ∶ B → X and π′ ∶ B → X′. Let

pb(clp(π), clp(π′)) clp(X′)

clp(X) clp(B)

π′

π clp(π′)

clp(π)

be the pullback diagram of the cospan (clp(π), clp(π′)) in BA. We say that B is a
Λ-bisimulation if for all (x,x′) ∈ B and λ ∈ Λ we have

clp(π) ○ clp(γ) ○ λX ○ πn = clp(π′) ○ clp(γ′) ○ λX′ ○ π′n.

A relation B between two T-models (X,γ,V ) and (X′,γ′,V ′) is a Λ-bisimulation if it
is a Λ-bisimulation between the underlying T-coalgebras and for all (x,x′) ∈ B and p ∈ Φ
we have x ∈ V (p) iff x′ ∈ V ′(p). Two states x ∈ X and x′ ∈ X′ are called Λ-bisimilar,
notation x -Λ x

′, if there is a Λ-bisimulation linking them. ◁

2.31 Remark. Observe that (a,a′) ∈ ClpX ×ClpX′ is B-coherent, i.e. B[a] ⊆ a′ and
B−1[a′] ⊆ a, if and only if it is in pb(clp(π), clp(π′)). It follows from unraveling that
B is a Λ-bisimulation if and only if for all λ ∈ Λ and all B-coherent pairs of clopens
(ai,a′i) ∈ ClpX ×ClpX′ we have

γ(x) ∈ λX(a1, . . . ,an) iff γ′(x′) ∈ λX′(a′1, . . . ,a′n).

The following statements are easy to verify.

2.32 Lemma. Let T be an endofunctor on Stone, Λ a set of predicate liftings for T and
(X,γ,V ) and (X′,γ′,V ′) T-models. If two states x ∈ X and x′ ∈ X′ are Λ-bisimilar, then
they are modally equivalent.

2.33 Proposition. Let T be an endofunctor on Stone and Λ set of predicate liftings for
T. Every Aczel-Mendler bisimulation between T-models is a Λ-bisimulation.

If Λ is characteristic, it follows from the previous lemma and proposition combined
with proposition 2.29 that Aczel-Mendler bisimilarity implies behavioural equivalence.
If moreover T preserves weak pullbacks, the converse holds as well. The proof of this is
similar to theorem 4.3 and the preceding discussion in [49].

However, we do not wish to make this assumption. For example, the Vietoris functor
does not preserve weak pullbacks [9, Corollary 4.3]. The next proposition shows that
for monotone Λ, behavioural equivalence implies Λ-bisimilarity, without assuming T to
preserve weak pullbacks.

2.34 Proposition. Let Λ be a monotone characteristic set of predicate liftings for a
functor T and suppose two states x and x′ in T-models X = (X,γ,V ) and X′ = (X′,γ′,V ′)
are behaviourally equivalent. Then x and x′ are Λ-bisimilar.

Proof. Since x and x′ are behaviourally equivalent, there must be some T-coalgebra
(Y, δ) and some coalgebra morphisms f ∶ X → Y, f ′ ∶ X′ → Y such that f(x) = f ′(x′).
Let

B = {(u,u′) ∈ X ×X′ ∣ f(u) = f ′(u′)},
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then clearly xBx′. We claim that B is a Λ-bisimulation.
In order to show that B is a Stone space, it suffices to show that B is closed. To see

this, suppose (u,u′) ∉ B. Then f(u) ≠ f ′(u′) and since Y is Hausdorff there exist disjoint
clopens a,a′ ∈ ClpY that contain f(u) and f ′(u′) respectively. Now f−1(a)× (f ′)−1(a′)
contains (u,u′), is open in X×X′ and is disjoint from B. Therefore B is closed in X×X′.
It follows from proposition 2.29 that for all (x,x′) ∈ B we have x ∈ V (p) iff x′ ∈ V ′(p).

Let λ ∈ Λ be n-ary and for 1 ≤ i ≤ n let (ai,a′i) be a B-coherent pair of clopens.
Suppose uBu′ and γ(u) ∈ λX(a1, . . . ,an). We will show that γ′(u′) ∈ λX′(a′1, . . . ,a′n),
the converse direction is similar.

Let us construct for each pair (ai,a′i) a clopen set bi ∈ ClpY such that f[ai] ⊆ bi and
(f ′)−1(bi) ⊆ a′i. Since ai is clopen, f[ai] is closed in Y, so we may write f[ai] = ⋂{c ∈
ClpY ∣ f[ai] ⊆ c}. Because continuous maps preserve arbitrary meets, we have

⋂{(f ′)−1(c) ∣ f[ai] ⊆ c ∈ ClpY} = (f ′)−1(f[ai]) ⊆ a′.

The collection {X′ ∖ (f ′)−1(c) ∣ f[ai] ⊆ c ∈ ClpY} is an open cover of the (closed hence)
compact set X′∖a′, so there exists a finite number c1, . . . , cm ∈ ClpY such that ⋃mj=1 X

′∖
(f ′)−1(cj) covers X′ ∖ a′. Set bi = c1 ∩ ⋯ ∩ cm, then bi ∈ ClpY and (f ′)−1(bi) ⊆ ai.
Moreover f[ai] ⊆ bi, hence ai ⊆ f−1(bi).

By monotonicity and naturality of λ we find

γ(u) ∈ λX(a1, . . . ,an) ⊆ λX(f−1(b1), . . . , f−1(bn)) = (Tf)−1(λY(b1, . . . , bn)),

so (Tf)(γ(u)) ∈ λY(b1, . . . , bn). Since f and f ′ are coalgebra morphisms we have
(Tf)(γ(u)) = δ(f(u)) = δ(f ′(u′)) = (Tf ′)(γ′(u′)) and by monotonicity and natural-
ity of λ again we find

γ′(u′) ∈ (Tf ′)−1(λY(b1, . . . , bn)) = λX′((f ′)−1(b1), . . . , (f ′)−1(bn)) ⊆ λX′(a′1, . . . ,a′n).

This proves the proposition.

2.35 Example (Descriptive frames). As a first example of logic on a Stone-coalgebra,
we mention descriptive frames for modal logic [37]. Descriptive frames turn out to be
coalgebras for the Vietoris functor:

For a topological space X let VX be the set of closed subsets of X topologised by the
subbase

}a ∶= {b ∈ VX ∣ b ⊆ a}, }a ∶= {b ∈ VX ∣ a ∩ b ≠ ∅},

where a ranges over the opens of X. This assignment can be extended to a functor on
Top by defining Vf ∶ VX → VX′ to be the direct image of f , for continuous functions
f ∶ X → X′. It is well known that the Vietoris functor restricts to KTop, KHaus and
Stone, and that the category of descriptive frames and its morphisms is isomorphic to
Coalg(VStone) [37]. For a thorough survey of properties of the Vietoris functor, see
[58]. ◁

Descriptive monotone frames are another important example of Stone-coalgebras.
Below we give a way to view these as Stone coalgebras which is slightly different from,
but equivalent to [16, 21]. The example will also play a role in the next chapter.

2.36 Definition ([20], Definition 7.30). A general monotone frame is a triple (X,µ,A)
where (X,µ) is a monotone frame and A ⊆ PX is a collection of admissible subsets of
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X which contains ∅ and X and is closed under finite intersection, finite union, taking
complements and the map

mµ ∶ PX → PX ∶ a ↦ {x ∈X ∣ a ∈ µ(x)}.

A general monotone frame morphism from (X,µ,A) to (X ′,µ′,A′) is a bounded
morphism f ∶ (X,µ) → (X ′,µ′) between the underlying monotone frames such that
f−1(a′) ∈ A for all a′ ∈ A′.

Let X denote the topological space with underlying set X topologised by the clopen
subbase A. A general monotone frame is called differentiated if x ∈ a⇔ x′ ∈ a for all
a ∈ A implies x = x′. It is called tight if for all x ∈X, c ∈KX and u ⊆X we have

• c ∈ ν(x) iff every admissible superset a ⊇ c is in ν(x); and

• u ∈ ν(x) iff there exists a closed subset c ⊆ u that is in ν(x).

A general monotone frame is called compact ifA is compact. A descriptive monotone
frame is differentiated, tight and compact general monotone frame. ◁

The following definition is taken from [16] and is equivalent to definition 3.9 in [21].

2.37 Definition. For a Stone space X = (X, τ) define D′
stX to be the collection of sets

W ⊆ PX such that a ∈W iff there exists a closed c ⊆ a such that every clopen superset
of c is in W . Endow D′

stX with the topology generated by the clopen subbase

}a ∶= {W ∈ D′
stX ∣ a ∈W}, }a ∶= {W ∈ D′

stX ∣Xa ∉W},

where a ranges over ClpX.
For continuous functions f ∶ X→ X′ define

D′
stf ∶ D′

stX→ D′
stX

′ ∶W ↦ {a ∈ PX ∣ f−1(a) ∈W}. ◁

Descriptive monotone frames are known to be coalgebras for D′
st. In fact, the cate-

gory of descriptive conditional frames and general monotone frame morphisms, DMF, is
isomorphic to the category of D′

st-coalgebras and D′-coalgebra morphisms [21],

DMF ≅ Coalg(D′
st).

The functor Dst in the next definition arises from definition 2.37 by replacing the use
of clopen sets by open sets. This functor will turn out to be equivalent to D′

st, but allows
for a generalisation to the category of compact Hausdorff spaces in section 3.3.

2.38 Definition. Let X = (X, τ) be a Stone space. Let DstX be the collection of sets
W ⊆ PX such that a ∈W iff there exists a closed c ⊆ u such that every open superset of
c is in W . Endow DstX with the topology generated by the subbase

}a ∶= {W ∈ DstX ∣ a ∈W}, }a ∶= {W ∈ DstX ∣X ∖ a ∉W},

where a ranges over ΩX. For continuous functions f ∶ X → X′ define Dstf ∶ DstX →
DstX

′ ∶W ↦ {a′ ∈ PX ∣ f−1(a′) ∈W}. ◁

2.39 Lemma. If f ∶ X → X′ is a morphism in Stone, then Dstf is a well-defined
continuous function from DstX to DstX

′.
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Proof. Dstf is well-defined. Let W ∈ DstX. We need to show that Dstf(W ) ∈ DstX
′.

Suppose a′ ∈ Dstf(W ). Then f−1[a′] ∈W and so there exists a closed c ⊆ f−1[a′] such
that c ∈W . Since X is compact and X′ is Hausdorff, f[c] is a closed set in X′. Besides
f[c] ⊆ a′. Suppose f[c] ⊆ b for some open b ∈ ΩX′, then c ⊆ f−1[b] so f−1[b] ∈ W
and hence b ∈ Dstf(W ). So all open supersets of f[c] are in Dstf(W ), and therefore
f[c] ∈ Dstf(W ).

Dstf is continuous. For continuity we need to show that both (Dstf)−1[ }a′] and
(Dstf)−1[}a′] are open in DstX, whenever a′ ∈ Ω(X′). It follows for a straightforward
computation that (Dstf)−1( }a′) = }f−1(a′), which is open in DstX by definition. In a
similar way we find (Dstf)−1(}a′) =}f−1[a′] ∈ ΩDstX.

Note that the first part of the previous lemma makes use of the fact that X is compact
and X′ is Hausdorff.

For an element W ∈ DstX its upward closure is defined by ↑(W ) ∶= {u ⊆ X ∣ ∃u′ ∈
W s.t. u′ ⊆ u}. The following lemma gives a more intuitive characterisation of the action
of Dst on morphisms. The proof is straightforward.

2.40 Lemma. Let f ∶ X → X′ be a continuous map between compact Hausdorff spaces
and suppose W ∈ DstX. Then

Dstf(W ) = ↑({f[u] ∣ u ∈W}).

Finally, let us show that definition 2.38 is equivalent to definition 2.37 when restricted
to Stone. It will follow as a corollary that DstX is a Stone space whenever X is a Stone
space.

2.41 Theorem. Let X = (X, τ) be a Stone space. Then DstX ≅ D′
stX.

Proof. We first show that the sets underlying both topological spaces are the same. It
is obvious that DstX ⊆ D′

stX. Conversely, take W ∈ D′
stX. To show that W ∈ DstX take

an arbitrary a ∈ W . By definition of D′
stX there exists a closed set k ⊆ a such that all

clopen supersets of k are in W . Let b be any open superset of k. Since the clopen sets
form a basis for X, for each x ∈ a we can find a clopen cx such that x ∈ cx ⊆ b. The
set k is covered by a finite amount of such sets because it is closed and X is compact.
Therefore there is a clopen set c such that k ⊆ c ⊆ b. By assumption we have c ∈ W ,
hence b ∈ W . This shows that for all a ∈ W there is a closed subset k of a such that
every open superset of k is in W , so W ∈ DstX.

Next let us compare the topologies. It follows immediately form the definitions that
ΩD′

stX ⊆ ΩDstX. For the converse, it suffices to show that }a,}a ∈ ΩD′
stX for a ∈ ΩX.

Suppose W ∈ }a. Then a ∈W hence there is a closed k ⊆ a such that all open supersets
of k are in W . Since X is a Stone space there exists a clopen c such that k ⊆ c ⊆ a. By
assumption c ∈W , so W ∈ }c. Since }c ⊆ }a, this proves that every element in }a has
an open neighbourhood in ΩD′

stX contained in }a, hence }a ∈ ΩD′
stX. The case of }

can be treated similarly.

2.42 Corollary. The functor Dst is an endofunctor on Stone.

Another guiding example of logic on Stone-coalgebras is that of descriptive condi-
tional frames, which will be developed in chapter 5.
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3

Coalgebraic geometric logic

In this chapter we investigate how one can extend geometric logic (i.e. logic with finite
conjunctions and infinite disjunctions) with extra modalities. Some advances have been
made in this field: Johnstone [29] defines a point-free, syntactic version of the Vietoris
functor, using an extension of geometric logic with two unary operators, ◻ and ◇.
Furthermore, in [57] the authors define the so-called Vietoris powerlocale functor VT ∶
Frm → Frm for a given set functor T which satisfies some categorical properties, and
take steps towards developing a logic with finite conjunctions, infinite disjunctions and
a single modality.

Whereas the authors of [57] use the method of relation lifting to define the new
modality, we use a modified form of predicate liftings. Besides, where they take an alge-
braic point of view, we adopt a topological approach. A category of (certain) topological
spaces will form the base category of the coalgebras that we use, and the open sets serve
as the interpretants of proposition letters.

In the Stone case, there is a dual equivalence between Stone and BA; the clopen sets
in a Stone space, which are the interpretants of the proposition letters, form a Boolean
algebra. This allows one to take both a topological and an algebraic point of view,
i.e., every endofunctor on Stone gives rise, via this duality, to an endofunctor on BA
and vice versa. In the new setting for coalgebraic geometric logic a similar duality is
desirable. The open sets of a topological space also form an algebraic structure: a frame.
In order to have a dual equivalence between topological spaces and frames, we have to
restrict both categories (the category of topological spaces and continuous maps and the
category of frames and frame homomorphisms) to suitable full subcategories. We will
see in section 3.1 that there are several possibilities for this restriction. It is not a priori
clear which of these is the right one. Throughout the chapter we will encounter pros and
cons of each of these possibilities.

This chapter is structured as follows: In section 3.1 we lay the foundations for this
chapter by investigating geometric logic and dualities. We find three candidates for the
base category of coalgebraic geometric logic: the (full) subcategories of Top whose objects
are sober spaces, compact sober spaces and compact Hausdorff spaces respectively. In
the subsequent sections we develop coalgebraic geometric logic (section 3.2), examine two
examples (section 3.3) and investigate bisimulations between the models for coalgebraic
logic (section 3.4). The choice of base category will be continually remarked upon;
where possible we will give definitions and results for all choices and whenever this is
not possible we will indicate the problem.
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3.1 Geometric logic and duality

Before defining geometric logic, we recall some definitions concerning frames.

3.1 Definition. A frame is a complete lattice F in which for all a ∈ F and S ⊆ F the
infinite distributive law holds:

a ∧⋁S =⋁{a ∧ s ∣ s ∈ S}.

A frame homomorphism is a function between frames that preserves finite meets and
arbitrary joins. ◁

3.2 Definition. A presentation is a pair ⟨G,R⟩ where G is a set of generators and
R is a collection of relations between expressions constructed from the generators using
arbitrary joints and finite meets.

Let F be a frame. Recall that ZF is the underlying frame. We say that ⟨G,R⟩
presents F if there is an assignment f ∶ G → ZF of the generators such that (i), (ii)
and (iii) hold:

(i) The set {f(g) ∣ g ∈ G} generates F .

The assignment f can be extended to an assignement f̃ for any expression x build from
the generators in G using ∧ and ⋁. We require

(ii) If x = x′ is a relation in R, then f̃(x) = f̃(x′) in F .

(iii) For any F ′ and assignment f ′ ∶ G → ZF ′ satisfying property (ii) there exists a
frame homomorphism h ∶ F → F ′ such that the diagram

G ZF

ZF ′

f

f ′
Zg

commutes. ◁

The frame homomorphism from (iii) is necessarily unique, because the image of the
generating set {f(g) ∣ g ∈ G} under h is determined by the diagram. A detailed account
of frame presentations may be found in chapter 4 of [59].

3.3 Remark. We will regularly want to define a frame homomorphism F → F ′ from a
frame F presented by ⟨G,R⟩ to some frame F ′. By definition 3.2 it suffices to give an
assignment f ′ ∶ G→ F ′ such that (ii) holds, because this yields a unique frame homomor-
phism F → F ′. By abuse of notation, we will denote the unique frame homomorphism
F → F ′ such that the diagram in (iii) commutes with f ′ as well.

The next propositions allows us to define a frame by generators and relations. A
proof can be found in [29, Proposition II2.11].

3.4 Proposition. Any presentation by generators and relations presents a frame.

3.5 Definition. A set B of elements in a frame F is called directed if for all a, b ∈ B
there is a c ∈ B such that a ≤ c and b ≤ c. We denote the disjunction ⋁B of a directed
set B by B, that is, the symbol indicates that the set B is a directed set.

A collection B ⊆ PX of subsets of a set X is called directed if for all a, b ∈ B there is
a c ∈ B such that a ⊆ c and b ⊆ c. We write ⋃↑B for the union ⋃B of such a directed set
B. ◁
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The opens of a topological space with the inclusion order provide an example of a
frame. In this case the meet and join are simply set-theoretic intersection and union.
Indeed, a finite meet of open sets is again open, as is an arbitrary union of opens. In
fact, there is a contravariant functor Top→ Frm sending a topological space to its frame
of open sets.

3.6 Definition. Let X be a topological space. Define opnX to be the frame of open sets
of X (that is, the collection of open sets ordered by inclusion; it is routine to check that
this is indeed a lattice). For a continuous function f ∶ X → X′ let opn f = f−1 ∶ opnX′ →
opnX. The map opn ∶ Top→ Frm is a contravariant functor.

A frame isomorphic to opnX for some topological space X is called spatial. ◁

An equivalent definition of spatiality is given in [29, II1.5]. The following definition
is stated for future reference.

3.7 Definition. Let F be a frame. A filter in F is a nonempty upwards closed set J
such that a, b ∈ J implies a ∧ b ∈ J . A filter is called prime if a ∨ b ∈ J implies a ∈ J or
b ∈ J . A completely prime filter is a filter such that for all S ⊆ A, ⋁S ∈ J implies
there is a ∈ S with a ∈ J .

For a, b ∈ F we say that a is well inside b, notation: a ⪕ b, if there is a c ∈ F such
that c ∧ a = � and c ∨ b = ⊺. An element a ∈ F is called regular if a = ⋁{b ∈ F ∣ b ⪕ a}
and a frame is called regular if all of its elements are regular. The negation of a ∈ F
is defined as ∼a = ⋁{b ∈ F ∣ a ∧ b = �}.

A frame F is compact if for all directed sets S, S = ⊺ implies ⊺ ∈ S. ◁

3.8 Lemma. For all elements a, b in a frame F we have a ⪕ b iff ∼a ∨ b = ⊺.

Proof. See III1.1 in [29].

3.9 Lemma. Finite meets and arbitrary joins of regular elements are regular.

Proof. It is known that d ≤ c ⪕ a ≤ b implies d ⪕ b. We first show that c ⪕ a and d ⪕ b
implies c ∧ d ⪕ a ∧ b. It is clear that c ∧ d ⪕ a and c ∧ d ⪕ b. Since ∼(c ∧ d) ∨ (a ∧ b) =
(∼(c ∧ d) ∨ a) ∧ (∼(c ∧ d) ∨ b) = ⊺ ∧ ⊺ = ⊺ we know c ∧ d ⪕ a ∧ b.

Now suppose a and b are regular elements, then

a ∧ b =⋁{c ∣ c ⪕ a} ∧⋁{d ∣ d ⪕ b} =⋁{c ∧ d ∣ c ⪕ a,d ⪕ b} ≤⋁{c ∣ c ⪕ a ∧ b} ≤ a ∧ b,

so a ∧ b is regular. If ai is regular for all i in some index set I, then

⋁
i∈I

ai =⋁
i∈I

(⋁{c ∣ c ⪕ ai}) ≤⋁{c ∣ c ⪕⋁
i∈I

ai} ≤⋁
i∈I

ai,

so an arbitrary join of regular elements is regular.

Now let us proceed to geometric logic. As stated in the introduction, geometric
logic can be viewed as the logic of finitely observable statements. A finitely observable
statement is a statement which can be verified in a finite amount of time. For example,
the statement

“There exist glow-in-the-dark turtles.”
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To verify this statement, it suffices to find a single glow-in-the-dark turtle. Therefore
the statement is finitely observable. On the other hand, to refute the statement, one
would have to find all turtles in the world and check that they do not glow in the dark.
To be complete, one should also check all past and future turtles. In a practical sense,
this statement can never be refuted. Thus, the statement

“Glow-in-the-dark turtles do not exist”

is not finitely observable.1

The previous discussion shows that finitely observable statements are not closed un-
der taking negations. The reader can easily convince himself that the collection of finitely
observable statements is not closed under implications either. However, finitely observ-
able statements are closed under taking arbitrary disjunctions and finite conjunctions.
This intuition leads to the following definition of geometric logic.

3.10 Definition. Let Φ be a set of proposition letters. The geometric formulae over Φ
are given by

ϕ ∶∶= ⊺ ∣ p ∣ ϕ1 ∧ ϕ2 ∣⋁
i∈I

ϕi,

where p ∈ Φ. We abbreviate � = ⋁∅. Write GL for the collection of geometric formulas.
A sequent is a pair of GL-formulas. We write ϕ ⊢ ψ if (ϕ,ψ) is a sequent. Intuitively,

this should be thought of as “ϕ implies ψ”. A geometric theory over Φ is a collection
of sequents that contains the axioms ϕ ⊢ ϕ and is closed under the following rules: cut

ϕ ⊢ ψ ψ ⊢ χ
ϕ ⊢ χ ,

the conjuction rules

ϕ ⊢ ⊺, ϕ ∧ ψ ⊢ ϕ, ϕ ∧ ψ ⊢ ψ,
ϕ ⊢ ψ ϕ ⊢ χ

ϕ ⊢ ψ ∧ χ ,

the disjunction rules

ϕ ⊢⋁S (ϕ ∈ S), ϕ ⊢ ψ (for all ϕ ∈ S)

⋁S ⊢ ψ

and frame distributivity

ϕ ∧⋁S ⊢⋁{ϕ ∧ ψ ∣ ψ ∈ S}.

Let T be a theory. If T contains ϕ ⊢ ψ and ψ ⊢ ϕ we say that ϕ and ψ are equivalent
with respect to T . We call ϕ and ψ equivalent if they are equivalent with respect to
every theory. ◁

3.11 Remark. The collection GL is not generally a set; it may be a proper class.
However, frame distributivity allows us to reduce every formula to an equivalent dis-
junction of finite conjunctions of symbols in Φ. Therefore the collection of formulas
modulo equivalence forms a set. Let T be a geometric theory. The rules imply that the
Lindenbaum-Tarski algebra, i.e. the set of geometric formulas modulo equivalence with
respect to T of a theory is a frame [62]. Accordingly, we shall call it the Lindenbaum-
Tarski frame.

1The existence of glow in the dark turtles has never been refuted. In fact, they have been observed
recently. See [19] for a scientific article and [41] for a video.
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For more information about the connection between geometric logic and frames we
refer to [62]. Topological spaces with a valuation form models for geometric logic.

3.12 Definition. A valuation of a topological space X is a map V ∶ Φ→ ΩX. One may
define truth of GL-formulas in X = (X,V ) inductively by

J⊺KX = UX, JpKX = V (p), Jϕ1 ∧ ϕ2KX = Jϕ1KX ∩ Jϕ2KX, J⋁
i∈I

ϕiKX =⋃
i∈I

JϕiKX.

We write X,x ⊩ ϕ iff x ∈ JϕKX. ◁

In definition 3.6 we have seen the functor opn ∶ Top → Frm. We will now define a
functor in the opposite direction that is right adjoint to opn.

3.13 Definition. A point of a frame F is a frame homomorphism p ∶ F → 2, with
2 = {⊺,�} the two-element frame. Let ptF be the collection of points of F endowed with
the topology {ã ∣ a ∈ F}, where ã = {p ∈ ptF ∣ p(a) = ⊺}. For a frame homomorphism
f ∶ F → F ′ define pt f ∶ ptF ′ → ptF by p ↦ p ○ f . The assignment pt defines a functor
Frm→ Top.

A topological space that arises as the space of points of a lattice is called sober. The
sobrification of a topological space X is pt(opnX). ◁

There is a 1-1 correspondence between the points of a frame and the completely
prime filters of the frame: For a completely prime filter F the map pF ∶ A → 2 defined
by pF (a) = ⊺ iff a ∈ F and pF (a) = � if a ∉ F is a point. Conversely, for a point p the set
p−1(⊺) is a completely prime filter.

Write SFrm, KSFrm and KRFrm for the full subcategories of Frm whose objects are
spatial frames, compact spatial frames and compact regular frames, respectively. For
topological spaces, write Sob, KSob and KHaus for the full subcategories of Top whose ob-
jects are sober spaces, compact sober spaces and compact Hausdorff spaces respectively.
Furthermore, we write ≡ for an equivalence between categories.

3.14 Proposition. The functor pt is a right adjoint to opn. This adjunction restricts
to a duality between the category of spatial frames and the category of sober spaces,

SFrm ≡ Sobop.

This duality restricts to the dualities

KSFrm ≡ KSobop

and
KRFrm ≡ KHausop.

For a more thorough exposition of frames and spaces, and a proof of the statements in
proposition 3.14 we refer to section C1.2 of [31]. We explicitly mention one isomorphism
which is part of this duality, because we will encounter it later on in this thesis.

3.15 Remark. Let X be a sober space. Then proposition 3.14 entails that there is an
isomorphism X→ pt(opnX). This isomorphism is given by x↦ px, where px is the point
given by

px ∶ opnX→ 2 ∶ { a ↦ ⊺ if x ∈ a
a ↦ � if x ∉ a

for all x ∈ X and a ∈ ΩX.
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3.2 Coalgebraic geometric logic

As stated in the introduction of this chapter, it is not clear what base space we should use
for the models of coalgebraic geometric logic. We have seen at the end of the previous
section three candidates, Sob, KSob and KHaus, which all have a dually equivalent
algebraic counterpart. We will start this section with defining the language and semantics
for coalgebraic geometric logic and thereafter relate the notions of modal equivalence and
behavioural equivalence.

The definitions of predicate liftings, geometric T-models, the language and its se-
mantics are the same whether we are working on Sob, KSob or KHaus. We write C for
any of these categories.

3.16 Definition. Let T be an endofunctor on C. An open predicate lifting for T is
a natural transformation

λ ∶ Ωn → Ω ○T.

A collection of open predicate liftings for T is called a geometric modal signature
for T. An open predicate lifting is called monotone in its i-th argument if for all
a1, . . . ,an, b we have λX(a1, . . . ,ai, . . . ,an) ⊆ λX(a1, . . . ,ai∪b, . . . ,an) and monotone if
it is monotone in every argument. A geometric modal signature for a functor T is called
monotone if every open predicate lifting in it is monotone, and characteristic if for
every object X in C the collection

{λX(a1, . . . ,an) ∣ λ ∈ Λ n-ary ,ai ∈ ΩX}

is a sub-base for the topology on TX. ◁
Note that if T is an endofunctor on Sob that restricts to KSob or KHaus, then an

open predicate lifting λ for T restricts to an open predicate lifting for KSob or KHaus
respectively.

The next two definitions are the analogs of definitions 2.26 and 2.27. Recall that Φ
is some fixed set of proposition letters.

3.17 Definition. A geometric T-model for a functor T ∶ C→ C is a triple X = (X,γ,V )
where (X,γ) is a T-coalgebra and V ∶ Φ → ΩX is a valuation of the proposition letters.
A map f ∶ X → X′ is a geometric T-model morphism from (X,γ,V ) to (X′,γ′,V ′)
if f is a coalgebra morphism between the underlying coalgebras and f−1 ○ V ′ = V . The
collection of geometric T-models and geometric T-model morphisms forms a category,
which we denote by Mod(T). ◁
3.18 Definition. The language induced by a geometric modal signature is the collec-
tion GML(Λ) of formulas defined by the grammar

ϕ ∶∶= ⊺ ∣ p ∣ ϕ1 ∧ ϕ2 ∣⋁ϕi ∣ ♡λ(ϕ1, . . . ,ϕn),

where p ∈ Φ and λ ∈ Λ is n-ary. Abbreviate � ∶= ⋁∅. ◁
3.19 Definition. The semantics of ϕ ∈ GML(Λ) on a geometric T-model X = (X,γ,V ),
where T is an endofunctor on C, is given recursively by

J⊺KX =X, JpKX = V (p), Jϕ ∧ ψKX = JϕKX ∩ JψKX, J⋁
i∈I

ϕiKX =⋃
i∈I

JϕiKX,

J♡λ(ϕ1, . . . ,ϕn)KX = γ−1(λX(Jϕ1KX, . . . , JϕnKX)).

We write X,x ⊩ ϕ iff x ∈ JϕKX. Two states x and x′ are called modally equivalent if
they satisfy the same formulas, notation x ≡Λ x

′. ◁
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The following proposition shows that morphisms preserve truth. Its proof is similar
to the proof of theorem 6.17 in [56]. We give it here for the sake of completeness.

3.20 Proposition. Let T ∶ C → C be a functor and Λ a geometric modal signature for
T. Let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be geometric T-models and let f ∶ X→ X′ be a
geometric T-model morphism. Then for all ϕ ∈ GML(Λ) and x ∈ X we have

X,x ⊩ ϕ iff X′, f(x) ⊩ ϕ.

Proof. We will prove that JϕKX = (Ωf)JϕKX
′

for all formulas ϕ using induction on the
complexity of the formula. The propositional case follows from the definition of a ge-
ometric T-model morphism. The cases ∧ and ⋁ are routine, so the only case left is
J♡λ(ϕ1, . . . ,ϕn)KX = (Ωf)J♡λ(ϕ1, . . . ,ϕn)KX

′

.
Since f is a coalgebra morphism the left diagram below commutes. Applying Ω to

the diagram yields the right commutative diagram.

X X′

TX TX′

f

γ γ′

Tf

ΩX ΩX′

Ω(TX) Ω(TX′)

Ωf

Ωγ Ωγ′

Ω(Tf)

(3.1)

We observe

J♡λ(ϕ1, . . . ,ϕn)KX = (Ωγ)(λX(Jϕ1KX, . . . , JϕnKX)) (definition 3.19)

= (Ωγ)(λX((Ωf)Jϕ1KX
′

, . . . , (Ωf)JϕnKX
′)) (induction)

= (Ωγ)(Ω(Tf)(λX′(Jϕ1KX
′

, . . . , JϕnKX
′))) (naturality of λ)

= (Ωf)(Ωγ′)λX′(Jϕ1KX
′

, . . . , JϕnKX
′) (by (3.1))

= (Ωf)J♡λ(ϕ1, . . . ,ϕn)KX
′

. (definition 3.19)

This proves the proposition.

We will now relate modal equivalence to behavioural equivalence. It is necessary to
restrict our attention to a single base category, namely Sob, rather than the base category
C we have been working with until now. The following remark is very important.

3.21 Remark. The notion of behavioural equivalence depends on the base category
we are working over! Suppose T is a functor on Sob, Λ is a geometric modal signature
for T and X = (X,γ,V ) and X′ = (X′,γ′,V ′) are two geometric T-models. If x ∈ X

and x′ ∈ X′ are behaviourally equivalent, then there exists a Z ∈ Mod(T) and model
morphisms f ∶ X→ Z and f ′ ∶ X′ → Z such that f(x) = f ′(x′).

Now suppose that T restricts to KHaus (write TKHaus for this restriction) and X and
X′ happen to be compact Hausdorff spaces. If we view X and X′ as geometric TKHaus-
models, the elements x and x′ are not necessarily behaviourally equivalent. Indeed, the
model Z need not be compact Hausdorff. Therefore, we should be careful with the notion
of behavioural equivalence and, if ambiguity arises, specify with respect to which base
category the elements are behaviourally equivalent.

It turns out that modal equivalence and behavioural equivalence coincide when C =
Sob and the geometric modal signature for a functor is characteristic. The remainder of
this section is devoted to proving the following theorem, and a variation thereof.
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3.22 Theorem. Let T be an endofunctor on Sob, Λ a characteristic geometric modal
signature for T and X = (X,γ,V ) and X′ = (X′,γ′,V ′) two geometric T-models. Then
x ∈ X and x′ ∈ X′ are modally equivalent if and only if they are behaviourally equivalent.

In order to prove this theorem, we first investigate the necessary constructions.

3.23 Definition. Let T be an endofunctor on C and Λ a geometric modal signature
for T. We call two formulas ϕ and ψ equivalent on Mod(T) with respect to Λ, notation
ϕ ≡T,Λ ψ if X,x ⊩ ϕ iff X,x ⊩ ψ for all geometric T-models X and states x ∈ X. Denote
the equivalence class of ϕ by [ϕ]. Let Equiv(T, Λ, Φ) be the collection of formulas
modulo ≡T,Λ and define disjunction and arbitrary conjunction by

[ϕ] ∧ [ψ] ∶= [ϕ ∧ ψ]

⋁
i∈I

[ϕi] ∶= [⋁
i∈I

ϕi].

(This is well defined by lemma 3.24.) We call this the equivalence frame for T with
respect to Λ. ◁

3.24 Lemma. Let T be an endofunctor on C and Λ a geometric modal signature for T.
Then Equiv(T, Λ, Φ) is indeed a frame.

Proof. We need to show the conjunction and disjunction from definition 3.23 are well
defined, that is, they do not rely on the choice of the representatives. Suppose ϕi ≡T,Λ ψi
for all i in some index set I. Then

X,x ⊩⋁
i∈I

ϕi iff X,x ⊩ ϕi for some i ∈ I iff X,x ⊩ ψi iff X,x ⊩⋁
i∈I

ψi.

The case for the conjunction is similar.

The theory of a point x in a geometric T-model X is the collection of formulas that
are true at x. It is easy to show that the theory of x is a completely prime filter in
Equiv(T, Λ, Φ). This motivate the next definition.

3.25 Definition. Let T be an endofunctor on C and Λ a geometric modal signature for
T. Define Z = pt(Equiv(T, Λ, Φ)). For every geometric T-model X = (X,γ,V ) define

thX ∶ X→ Z ∶ x↦ {ϕ ∈ GML(Λ) ∣ X,x ⊩ ϕ}. ◁

The space Z will turn out to be the state space of a final coalgebra in Mod(T). We
use the letter Z because it is the final letter of the roman alphabet. The functor T has
a dual on SFrm.

3.26 Definition. Let T be a functor on Sob and Λ a characteristic geometric modal
signature for T. Define

L ∶ Frm→ Frm

by
L = opn ○T ○ pt .

Obviously, this functor restricts to an endofunctor on SFrm, where it is (trivially) dual
to T. ◁

31



We will now endow Equiv(T, Λ, Φ) with an L-algebra structure. For tidiness, and
because no confusion is likely to arise, we will write E for Equiv(T, Λ, Φ).

Since Λ is characteristic, the frame LE is generated by the sets {λX(a1, . . . ,an) ∣ λ ∈
Λ,ai ∈ ΩZ}. Therefore we can define an assignment on these generators and use remark
3.3 to extend this to a frame homomorphism LE → E. Recall that by definition all open
sets of ptE are of the form ϕ̃ for some formula ϕ ∈ GML(Λ).

3.27 Definition. Endow E with an L-algebra structure δ ∶ LE → E, where δ is defined
on generators by

δ ∶ LE → E ∶ λZ(ϕ̃1, . . . , ϕ̃n)↦ [♡λ(ϕ1, . . . ,ϕn)]. ◁

3.28 Lemma. δ is well defined.

Proof. In order to prove that this is well-defined we need to show that the images of the
generators of E satisfy the same relations that they satisfy in LE. Recall Z = ptE, then
LE = opn(TZ). We need to show that

⋃
i∈I

( ⋂
j∈Ji

λi,j
Z

(ϕ̃i,j1 , . . . , ϕ̃i,jni,j)) = ⋃
k∈K

( ⋂
`∈Lk

λk,`
Z

(ϕ̃k,`
1 , . . . , ϕ̃k,`

nk,`
)) (3.2)

implies

⋁
i∈I

( ⋀
j∈Ji

♡λi,j(ϕi,j1 , . . . ,ϕi,jni,j)) ≡T,Λ ⋁
k∈K

( ⋀
`∈Lk

♡λk,`(ϕk,`
1 , . . . ,ϕk,`

nk,`
)), (3.3)

where the Ji and Lk are finite index sets. We will see that this follows from naturality of
λ. Our strategy is to show that the truth sets of the right hand-side and left hand-side
of (3.3) coincide in every geometric T-model X = (X,γ,V ).

Observe that the map thX ∶ X → Z, which sends a point to its theory, is continuous
because

th−1
X (ϕ̃) = JϕKX, (3.4)

which is open in X for all formulas ϕ. Compute

⋃
i∈I

( ⋂
j∈Ji

λi,j
X

(Jϕi,j1 KX, . . . , Jϕi,jni,j K
X))

=⋃
i∈I

( ⋂
j∈Ji

λi,j
X

(th−1
X (ϕ̃i,j1 ), . . . , th−1

X (ϕ̃i,jni,j))) (by (3.4))

=⋃
i∈I

( ⋂
j∈Ji

(T thX)−1(λi,j
Z

(ϕ̃i,j1 , . . . , ϕ̃i,jni,j))) (naturality of λ)

= (T thX)−1(⋃
i∈I

( ⋂
j∈Ji

λi,j
Z

(ϕ̃i,j1 , . . . , ϕ̃i,jni,j))) (⋆)

= (T thX)−1( ⋃
k∈K

( ⋂
`∈Lk

λk,`
Z

(ψ̃k,`
1 , . . . , ψ̃k,`

nk,`
))) (assumption (3.2))

= ⋃
k∈K

( ⋂
`∈Lk

(T thX)−1(λk,`
Z

(ψ̃k,`
1 , . . . , ψ̃k,`

nk,`
))) (⋆)

= ⋃
k∈K

( ⋂
`∈Lk

λk,`
X

(th−1
X (ψk,`

1 ), . . . , th−1
X (ψk,`

nk,`
))) (naturality of λ)

= ⋃
k∈K

( ⋂
`∈Lk

λk,`
X

(Jψk,`
1 KX, . . . , Jψk,`

nk,`
KX)). (by (3.4))
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The steps with (⋆) hold because inverse images of maps preserve all unions and inter-
sections. This entails that for all geometric T-models and all states x in X we have

X,x ⊩⋁
i∈I

( ⋀
j∈Ji

♡λi,j(ϕi,j1 , . . . ,ϕi,jni,j)) iff X,x ⊩ ⋁
k∈K

( ⋀
`∈Lk

♡λk,`(ϕk,`
1 , . . . ,ϕk,`

nk,`
)),

and hence (3.3) holds. Therefore δ is well defined.

Since we defined δ on generators of LE, by remark 3.3 it extends to a frame homo-
morphism which, by abuse of notation, we shall also denote by δ. The algebra structure
on E entails a coalgebra structure on Z.

3.29 Definition. Let ζ ∶ Z→ TZ be the composition

ptE pt(LE) pt(opn(T(ptE))) T(ptE)pt δ k−1
T(pt E)

Here kT(ptE) ∶ T(ptE)→ pt(opn(T(ptE))) is the isomorphism given in remark 3.15. Since
Z = ptE this indeed defines a map Z→ TZ. ◁

For an object Γ ∈ Z, (pt δ)(Γ) is the completely prime filter

F = {λ(ϕ̃1, . . . , ϕ̃n) ∈ pt(opn(T(ptE))) ∣ [♡λ(ϕ1, . . . ,ϕn)] ∈ Γ}

in pt(opn(T(ptE))). The element ζ(Γ) is the unique element in T(ptE) that corresponds
to F under the isomorphism kT(ptE). By definition of kT(ptE), this is the unique element
in the intersection of

{λ(ϕ̃1, . . . , ϕ̃n) ∣ [♡λ(ϕ1, . . . ,ϕn)] ∈ Γ}.

Moreover, it follows from the definition of kT(ptE) that [♡λ(ϕ1, . . . ,ϕn)] ∉ Γ implies
ζ(Γ) ∉ λ(ϕ̃1, . . . , ϕ̃n).

Notation. If no confusion is likely to occur we will omit the square brackets that indicate
equivalence classes of formulas in E. That is, we shall write ϕ ∈ E instead of [ϕ] ∈ E.

3.30 Definition. Let VZ ∶ Φ→ ΩZ be the valuation p↦ p̃. ◁

The triple Z = (Z, ζ,VZ) is a geometric T-model, because it is a T-coalgebra with a
valuation. We can prove a truth lemma for Z:

3.31 Lemma (Truth lemma). We have Z, Γ ⊩ ϕ iff ϕ ∈ Γ.

Proof. Use induction on the complexity of the formula. The propositional case follows
immediately from the definition of VZ. The cases ϕ = ϕ1∧ϕ2 and ϕ = ⋁i∈iϕi are routine.
So suppose ϕ = ♡λ(ϕ1, . . . ,ϕn). We have

Z, Γ ⊩ ♡λ(ϕ1, . . . ,ϕn) iff ζ(Γ) ∈ λZ(Jϕ1KZ, . . . , JϕnKZ) (definition of ⊩)

iff ζ(Γ) ∈ λZ(ϕ̃1, . . . , ϕ̃n) (induction)

iff ♡λ(ϕ1, . . . ,ϕn) ∈ Γ. (definition of ζ)

This proves the lemma.

3.32 Proposition. For every geometric T-model X = (X,γ,V ) the map thX ∶ X → Z is
a T-coalgebra morphism.
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Proof. We need to show that the following diagram commutes:

X Z

TX TZ

thX

γ ζ

T thX

Let x ∈ X. Since TZ is sober, hence T0, it suffices to show that T thX(γ(x)) and ζ(thX(x))
are in precisely the same opens of TZ. Moreover, we know that the open sets of TZ
are generated by the sets λZ(ϕ̃1, . . . , ϕ̃n), so it suffices to show that for all λ ∈ Λ and
ϕi ∈ GML(Λ) we have

T thX(γ(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n) iff ζ(thX(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n).

This follows from the following computation,

T thX(γ(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n)
iff γ(x) ∈ (T thX)−1(λZ(ϕ̃1, . . . , ϕ̃n))
iff γ(x) ∈ λX(th−1

X (ϕ̃1), . . . , th−1
X (ϕ̃n)) (naturality of λ)

iff γ(x) ∈ λX(Jϕ1KX, . . . , JϕnKX) (by (3.4))

iff X,x ⊩ ♡λ(ϕ1, . . . ,ϕn) (definition of ⊩)

iff ♡λ(ϕ1, . . . ,ϕn) ∈ thX(x) (definition of thX)

iff ζ(thX(x)) ∈ λZ(ϕ̃1, . . . , ϕ̃n) (definition of ζ)

This proves the proposition.

3.33 Theorem. The geometric T-model Z = (Z, ζ,VZ) is final in Mod(T).

Proof. Proposition 3.32 states that for every geometric T-model X = (X,γ,V ) there
exists a T-coalgebra morphism thX ∶ X→ Z, so we only need to show that this morphism
is unique.

Let f ∶ X→ Z be any coalgebra morphism. We know from proposition 3.20 coalgebra
morphisms preserve truth, so for all x ∈ X we have ϕ ∈ f(x) iff Z, f(x) ⊩ ϕ iff X,x ⊩ ϕ.
Therefore we must have f(x) = thX(x).

We now have all the tools to prove theorem 3.22.

3.22 Theorem. Let T be an endofunctor on Sob, Λ a characteristic geometric modal
signature for T and X = (X,γ,V ) and X′ = (X′,γ′,V ′) two geometric T-models. Then
x ∈ X and x′ ∈ X′ are modally equivalent if and only if they are behaviourally equivalent.

Proof of theorem 3.22. It follow from proposition 3.32 and theorem 3.33 that Z = (Z, ζ,VZ)
is final in Mod(T). Suppose x and x′ are modally equivalent, then thX ∶ X → Z and
thX′ ∶ X′ → Z′ are T-model morphisms such that thX(x) = thX′(x′), so x and x′ are
behaviourally equivalent. Conversely, if x and x′ are behaviourally equivalent, then we
must have thX(x) = thX′(x′) so x ≡Λ x

′.

Theorem 3.22 does not simply carry over to coalgebras on compact Hausdorff spaces.
The reason is that the equivalence frame is not necessarily compact or regular. Therefore
its dual, which is the prime candidate of the state space of a final coalgebra, need not
be compact Hausdorff. This hinders the construction of a final coalgebra of theories.
However, with a little work we can achieve a similar result for the base category KSob
of compact sober spaces and continuous maps.
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3.34 Theorem. Let T be an endofunctor on KSob, Λ a characteristic geometric modal
signature for T and X = (X,γ,V ) and X′ = (X′,γ′,V ′) two geometric T-models. Then
x ∈ X and x′ ∈ X′ are modally equivalent if and only if they are behaviourally equivalent.

Proof. If x and x′ are behaviourally equivalent, then there exists a geometric TKSob-
model U = (U,ν,VU) and T-model morphisms f ∶ X → U and f ′ ∶ X′ → U such that
f(x) = f ′(x′). It follows from proposition 3.20 that x and x′ are modally equivalent.

For the converse, we use a procedure similar to the one in between the statement of
theorem 3.22 and its proof.

Suppose x and x′ are modally equivalent. Define the equivalence relation ≡2 on
GML(Λ) by ϕ ≡2 ψ iff JϕKX = JψKX and JϕKX

′ = JψKX
′

. Let E2 be the collection of
formulae modulo ≡2 and denote by [ϕ] the equivalence class of ϕ in E2. (Note these square
brackets mean something different than the ones in definition 3.23.) Define disjunction
and conjunction by

[ϕ] ∧ [ψ] ∶= [ϕ ∧ ψ] and ⋁
i∈I

[ϕi] ∶= [⋁
i∈I

ϕi].

It is routine to check that E2 is indeed a frame. We claim that E2 is compact.

3.34.A Claim. The frame E2 is compact.

Proof of claim. Suppose ⋁i∈I[ϕi] = [⊺] in E. Then ⋁i∈I ϕi ≡2 ⊺, so by definition

⋃
i∈I

JϕiKX = X and ⋃
i∈I

JϕiKX
′ = X′.

By compactness of X and X′ there exist finite sets J ,J ′ ⊆ I such that

⋃
i∈J

JϕiKX = X and ⋃
i∈J ′

JϕiKX
′ = X′.

It follows that

⋁
i∈J∪J ′

ϕi ≡2 ⊺.

This proves compactness of E2. ◇

Let Y ∶= pt(E2). Then Y is a compact sober space. It is easy to see that the theory of
a point in X or X′, i.e. the collection of formulas it satisfies, is a completely prime filter
in E2. Therefore we may define

th′X ∶ X→ Y ∶ x↦ {ϕ ∈ GML(Λ) ∣ X,x ⊩ ϕ}.

For every open set [̃ϕ] in Y we have th′X([̃ϕ]) = {x ∈ X ∣ X,x ⊩ ϕ} = JϕKX. Since JϕKX is
open in X this shows that th′X is continuous. Similarly, we may define a continuous map
th′X′ ∶ X′ → Y.

Let L be the functor L = opn ○T ○ pt on KSFrm. Then L is dual to T. Since Λ is
characteristic, the frame LE2 is generated by the sets

{λY([̃ϕ1], . . . , [̃ϕn]) ∣ λ ∈ Λ, [̃ϕi] ∈ ΩY}.

Endow E2 with an L-algebra structure δ2 ∶ LE2 → E2 defined on generators by

δ ∶ LE2 → E2 ∶ λY([̃ϕ1], . . . , [̃ϕn])↦ [♡λ(ϕ1, . . . ,ϕn)].
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One can proof that δ2 is well defined in a manner similar to the proof of 3.28. It then
follows from remark 3.3 that the assignment δ2 indeed defines a homomorphism, which
we shall also call δ2.

We use the algebra structure on E2 to define a coalgebra on Y. Let β ∶ Y → TY be
the composition

ptE2 pt(LE2) pt(opn(T(ptE2))) T(ptE2).
pt δ k−1

T(pt E2)

Here kT(ptE2) ∶ T(ptE2) → pt(opn(T(ptE2))) is the isomorphism given in remark 3.15.
Since Y = ptE this indeed defines a continuous map Y→ TY. It follows from unravelling
the definitions that for any Γ ∈ Y, the image β(Γ) is the unique element x in TY satisfying

β(Γ) ∈ λY([̃ϕ1], . . . , [̃ϕn]) iff [♡λ(ϕ1, . . . ,ϕn)] ∈ Γ.

Endow the coalgebra (Y,β) with the valuation VY ∶ Φ→ ΩY ∶ p↦ [̃p] and set

Y = (Y,β,VY).

3.34.B Claim. The maps th′X ∶ X→ Y and th′X′ ∶ X→ Y are T-coalgebra morphism.

Proof of claim. We show this for th′X ∶ X → Y, the case for th′X′ being similar. We need
to show that the following diagram commutes:

X Y

TX TY

th′X

γ β

T th′X

Let x ∈ X. By the reasoning from proposition 3.32 it suffices to show that for all λ ∈ Λ
and ϕi ∈ GML(Λ) we have

T th′X(γ(x)) ∈ λY([̃ϕ1], . . . , [̃ϕn]) iff β(th′X(x)) ∈ λY([̃ϕ1], . . . , [̃ϕn]).

This follows from the following computation,

T th′X(γ(x)) ∈ λY([̃ϕ1], . . . , [̃ϕn])
iff γ(x) ∈ (T th′X)−1(λY([̃ϕ1], . . . , [̃ϕn]))
iff γ(x) ∈ λX((th′X)−1([̃ϕ1]), . . . , (th′X)−1([̃ϕn])) (naturality of λ)

iff γ(x) ∈ λX(Jϕ1KX, . . . , JϕnKX) (by (3.4))

iff X,x ⊩ ♡λ(ϕ1, . . . ,ϕn) (definition of ⊩)

iff ♡λ(ϕ1, . . . ,ϕn) ∈ th′X(x) (definition of th′X)

iff β(th′X(x)) ∈ λZ([̃ϕ1], . . . , [̃ϕn]) (definition of β)

This proves the claim. ◇

One can easily see that if x ∈ X and x′ ∈ X′ are modally equivalent, then thX(x) =
thX′(x′). Since Y = (Y,β,VY) is a geometric T-model and Y is a compact sober space,
this shows that x and x′ are behaviourally equivalent in Mod(T).
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3.3 Examples

The Vietoris functor, introduced (in a different form) in [64], has been well investigated
in the literature [30, 63, 9, 58]. It is defined on the category of all topological spaces
and is known to preserve compactness, the Hausdorff property, and zero-dimensionality
[37], among others. Let Vkh denote the restriction of the Vietoris functor to KHaus
There is an Isbell dual functor N for Vkh on the category of compact regular frames,
that is, there is a functor N ∶ KRFrm → KRFrm and a natural isomorphism opn ○Vkh ≅
N ○ opn. Coalgebras for Vkh are modal compact Hausdorff spaces. These spaces have
been extensively examined in [8].

3.35 Definition. The map N ∶ KRFrm → KRFrm is defined on an object F as the free
frame generated by ◻a,◇a, (a ∈ F ) subject to the relations

(N1) ◻⊺ = ⊺

(N3) ◻(a ∧ b) = ◻a ∧ ◻b

(N5) ◻(a ∨ b) ≤ ◻a ∨◇b

(N7) ◻ A = {◻a ∣ a ∈ A}

(N2) ◇� = �

(N4) ◇(a ∨ b) =◇a ∨◇b

(N6) ◻a ∧◇b ≤◇(a ∧ b)

(N8) ◇ A = {◇a ∣ a ∈ A}.

For frame morphisms f ∶ F → F ′ define Nf ∶ NF → NF ′ on generators by (Nf)(◻a) =
◻(f(a)) and (Nf)(◇a) =◇(f(a)). ◁

In [57] a different but equivalent definition of N is given, which uses the cover modal-
ity.

We state the following proposition for future reference. A proof may be found in
[30] or in section III.4 of [29]. An overview about dual functors for V for different base
spaces can be found in [58].

3.36 Proposition. There is a natural isomorphism opn ○VKHaus ≅ N ○ opn.

In the remainder of this section we focus on a generalisation of the monotone functor
from definition 2.38 and an Isbell dual for it. Observe that the assignment from definition
2.38 in fact defines an endofunctor on KHaus.

3.37 Definition. Let X = (X, τ) be a compact Hausdorff space. Let DkhX be the
collection of sets W ⊆ PX such that a ∈W iff there exists a closed c ⊆ u such that every
open superset of c is in W . Endow DkhX with the topology generated by the subbase

}a ∶= {W ∈ DkhX ∣ a ∈W}, }a ∶= {W ∈ DkhX ∣X ∖ a ∉W},

where a ranges over ΩX. For continuous functions f ∶ X → X′ define Dkhf ∶ DkhX →
DkhX

′ ∶W ↦ {a ∈ PX ∣ f−1(a) ∈W}. ◁

The proof that Dkhf is indeed a well-defined continuous function is the same as in
lemma 2.39. We can easily show that Dkh preserves compactness.

3.38 Lemma. If X is a compact space then so is DX.

Proof. By the Alexander subbasis theorem it suffices to show that any cover of the form

⋃
i∈I

}ai ∪ ⋃
j∈J

}bj

37



has a finite subcover. So suppose the above covers DX. Since ∅ ∈ DX and ∅ ∉ }a for
any open set a ∈ ΩX, we must have ∣J ∣ ≥ 1. Furthermore, we must have k ∈ I such that
ak is a superset of X ∖ bj for some j ∈ J , because otherwise the up-set ↑{X ∖ bj ∣ j ∈ J},
where each member is a superset of at least one of the bj , is not in the cover.

Let j be such that X ∖ bj ⊆ ak. Let W ∈ DX. If X ∖ bj ∉ W then W ∈ }bj and if
X ∖ bj ∈W then W ∈ }ak. This shows that }ak ∪}bj is a finite subcover.

We know now that Dkh preserves compactness. However, we do not yet know whether
Dkh preserves the Hausdorff property as well. We will not prove this directly, but first
give an Isbell dual M of Dkh, i.e. a functor on Frm such that for all compact Hausdorff
spaces X we have

M(opnX) ≅ opn(DkhX).

We then show that M(opnX) is compact regular, and it follows from proposition 3.14
that DkhX is compact Hausdorff.

3.39 Definition. Let F be a frame. Let MF be the frame generated by the set MF =
{◻a,◇a (a ∈ F )} subject to the relations

(M1) ◻(a ∧ b) ≤ ◻a

(M3) ◻a ∧◇b ≤ � whenever a ∧ b ≤ �

(M5) ◻ A = {◻a ∣ a ∈ A}

(M2) ◇a ≤◇(a ∨ b)

(M4) ◻a ∨◇b ≥ ⊺ whenever a ∨ b ≥ ⊺

(M6) ◇ A = {◇a ∣ a ∈ A},

where a, b ∈ F and A is a directed subset of F . For a homomorphism f ∶ F → F ′ define
Mf ∶ MF → MF ′ on generators by ◻a ↦ ◻f(a) and ◇a ↦ ◇f(a). The assignment M
defines a functor on Frm. ◁

The following proposition closely resembles that of proposition III4.3 in [29].

3.40 Proposition. If F is a regular frame, then so is MF .

Proof. We need to show that for all c ∈ MF we have c = ⋁{d ∈ MF ∣ d ⪕ c}. It follows
from lemma 3.9 that it suffices to focus on the generators of MF . Let a ∈ F , then we
know ⋁{d ∈ MF ∣ d ⪕ ◻a} ≤ ◻a. Suppose b ⪕ a in F , then by lemma 3.8 ∼b ∨ a = ⊺ and
hence ◇∼b ∨ ◻a ≥ ⊺. Also ∼b ∧ b = � so it follows from (M3) that ◇∼b ∧ ◻b = �. This
proves ◻b ⪕ ◻a, because the element ◇∼b is such that ◇∼b ∨ ◻a = ⊺ and ◇∼b ∧ ◻b = �.
Since F is regular and {b ∈ F ∣ b ⪕ a} is directed, it follows that

◻a = ◻⋁{b ∈ F ∣ b ⪕ a} =⋁{◻b ∈MF ∣ b ⪕ a} ≤⋁{d ∈MF ∣ d ⪕ ◻a}

so ◻a = ⋁{d ∈ MF ∣ d ⪕ ◻a}. In a similar fashion one may show that ◇a = ⋁{d ∈ MF ∣
d ⪕ ◇a}. This proves the lemma.

We now focus on a duality between Dkh and a restriction of M. The proof of the next
theorem is similar to the proof of proposition III4.6 in [29]. The main difference with
the proof in [29] is the way we define a point of pt(M(opnX)) from a given element of
DkhX. This is (of course) due to the fact that Vkh and Dkh are different functors.

3.41 Theorem. If X is a compact Hausdorff space then

pt(M(opnX)) ≅ DkhX.
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Proof. Define a map
ϕ ∶ DkhX→ pt(M(opnX)) ∶W ↦ pW ,

where we define pW on generators by

pW ∶M(opnX)→ 2 ∶ { ◻a ↦ ⊺ iff a ∈W
◇a ↦ � iff X ∖ a ∈W .

Conversely, for a point p ∈ pt(M(opnX)) let

Wp ∶= ↑{X ∖ a ∣ p(◇a) = �}.

This gives rise to a map ψ ∶ pt(M(opnX)) → DkhX. It is clear that Wp ∈ DkhX because
it is the up-set of a collection of closed sets; indeed, for each b ∈Wp there exists a closed
subset X ∖a ⊆ b with p(◇a) = � and by definition all open supersets of X ∖a are in Wp.

We will show that the pW are well-defined, that ϕ is a bijection and that ϕ is
continuous.

3.41.A Claim. If W ∈ DkhX then pW ∶M(opnX)→ 2 is a point.

Proof of claim. Since pW is a frame homomorphisms defined on generators, it suffices to
check that the pW (◻a) and pW (◇a) (where the a range over ΩX) satisfy (M1) through
(M6) from definition 3.39. Let us check (M1), (M3) and (M5), items (M2), (M4) and
(M6) being similar.

(M1) If pW (◻(a∩b)) = ⊺ then a∩b ∈W . SinceW is upward closed a ∈W , so pW (◻a) = ⊺.

(M3) If a ∩ b = ∅ then a ⊆ X ∖ b. Suppose pW (◻a) = ⊺ then a ∈ W so X ∖ b ∈ W so
pW (◇b) = � hence pW (◻a) ∧ pW (◇b) = �.

(M5) We claim that for all W ∈ DX and directed sets A ⊆ ΩX we have ⋃↑A ∈W iff there
is a ∈ A with a ∈W . The direction from right to left follows from the fact that W
is upwards closed. Conversely, suppose ⋃↑A ∈W , then there is a closed set k ⊆ ⋃↑A
with k ∈W . The elements of A now cover the closed therefore compact set k, so
there is a finite A′ ⊆ A with k ⊆ ⋃A′ and since A is directed there is a ∈ A with

⋃A′ ⊆ a. As k ∈W and k ⊆ a it follows that a ∈W .

Now we have pW (◻⋃↑A) = 1 iff ⋃↑A ∈W iff there is a ∈ A with a ∈W iff {pW (◻a) ∣
a ∈ A} = 1. ◇

3.41.B Claim. For all p ∈ pt(M(opnX)) we have X ∖ a ∈Wp iff p(◇a) = � and a ∈W
iff p(◻a) = ⊺.

Proof of claim. If p(◇a) = � then X ∖ a ∈ Wp. Conversely, Suppose X ∖ a ∈ Wp, then
there is some b with p(◇b) = � and X∖b ⊆X∖a. Therefore a ⊆ b and p(◇a) ≤ p(◇b) = �.
This proves X ∖ a ∈Wp iff p(◇a) = �.

If a ∈Wp then there is X ∖ b ⊆ a in Wp, so p(◇b) = �. Then a ∪ b = X, so it follows
from (M4) of 3.39 that p(◻a) = ⊺. If a ∉Wp and a′ ⪕ a, then there exists b with b∩a′ = ∅
and b ∪ a = X. Since X ∖ b ⊆ a, set set X ∖ b is not in Wp and hence we must have
p(◇b) = ⊺. As a′ ∩ b = ∅ it follows from (M3) that p(◻a′) = p(∅) = �. Now we use (M5)
and the fact that a = {a′ ∣ a′ ⪕ a} (this is true because X is assumed to be compact
Hausdorff so opnX is compact regular) to find

p(◻a) = {p(◻a′) ∣ a′ ⪕ a} = {� ∣ a′ ⪕ a} = �.

It follows that a ∈Wp iff p(◻a) = ⊺. ◇
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3.41.C Claim. The maps ϕ and ψ define a bijection between DkhX and pt(M(opnX)).

Proof of claim. For p ∈ pt(M(opnX)) and W ∈ DkhX we will show that pWp = p and
WpW = W . In order to prove that (the frame homomorphisms) p and pWp coincide, it
suffices to show that they coincide on the generators of M(opnX). By definition and
claim 3.41.B have

p(◻a) = ⊺ iff a ∈Wp iff pWp(◻a) = ⊺
and

p(◇a) = � iff X ∖ a ∉Wp iff pWp(◇a) = �.

In order to show that W =WpW it suffices to show that X ∖ a ∈W iff X ∖ a ∈WpW

for all open sets a, because elements of DkhX are uniquely determined by the closed sets
they contain. This follows immediately from the definitions and claim 3.41.B,

X ∖ a ∈W iff pW (◇a) = � iff X ∖ a ∈WpW . ◇

3.41.D Claim. The map ϕ ∶ DkhX→ pt(M(opnX)) is continuous.

Proof of claim. The opens of pt(M(opnX)) are generated by ◻̃a = {p ∣ p(◻a) = ⊺} and
◇̃a = {p ∣ p(◇a) = ⊺}, for a ∈ ΩX. We have

ϕ−1(◻̃a) = ϕ−1({p ∣ p(◻a) = ⊺}) = {W ∈ DX ∣ a ∈W} = }a

and similarly ϕ−1(◇̃a) =}a. Since }a and }a are open in DkhX, this proves continuity
of ϕ. ◇

We showed that ϕ is a bijective continuous function, hence a homeomorphism. This
completes the proof of the theorem.

As announced before definition 3.39 we will now prove that Dkh sends a compact
Hausdorff space to a compact Hausdorff space.

3.42 Corollary. If X is a compact Hausdorff space, then so is DkhX.

Proof. Since X is compact Hausdorff the frame opnX is compact regular. By proposi-
tion 3.40 M(opnX) is regular. It follows from lemma 3.38 that opn(DkhX) is compact
hence by theorem 3.41 M(opnX) is compact. So M(opnX) is compact regular. Since
pt(M(opnX)) ≅ DkhX the latter is compact Hausdorff by proposition 3.14.

3.43 Remark. The proof of corollary 3.42 may appear incoherent, because of its many
switches between the frame side and the topological side. However, it demonstrates
precisely the power of a duality like the one given in theorem 3.41: regularity is easier
to prove on the frame side, whereas for compactness the topological setting was more
insightful.

It can be proven that M preserves compactness on the frame side as well. This proof
is given in section A.2 in the appendix.

Denote by Mkr the restriction of M to KRFrm. Theorem 3.41 yields a map Mkr(opnX)→
opn(DkhX) for a compact Hausdorff space X given by

Mkr(opnX) opn(pt(Mkr(opnX))) opn(DkhX).opn ○ pt opnϕ

Unravelling the definitions shows that, on generators, it is given by ◻a ↦ }a and
◇a ↦}a.
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3.44 Definition. For every compact Hausdorff space X define ηX ∶ Mkr(opnX) →
opn(DkhX) on generators by ηX(◻a) = }a and ηX(◇a) =}a. By the preceding discus-
sion ηX is a well-defined frame isomorphism. ◁

It turns out that the maps ηX constitute a natural isomorphism.

3.45 Proposition. The collection η = (ηX)X∈KHaus is a natural isomorphism.

Proof. The isomorphism part is proposition 3.41, so we only need to show naturality.
That is, for any morphism f ∶ X→ X′ in KHaus, the following diagram commutes,

Mkr(opnX) Mkr(opnX′)

opn(Dkh)X opn(DkhX
′)

M(opn f)

ηX ηX′

opn(Df)

(Since opn is a contravariant functor, the horizontal arrows are reversed.) For this,
suppose ◻a′ is a generator of Mkr(opnX′). Then

opn(Dkhf) ○ ηX′(◻a) = opn(Dkhf)( }a) By definition 3.44

= (Dkhf)−1( }a) By definition of opn

= }f−1(a) By lemma 2.39

= ηX(◻f−1(a)) By definition 3.44

= ηX ○Mkr(f−1(◻a)) By definition of M
= ηX ○Mkr(opn f)(◻a). By definition of opn

and by analogous reasoning ΩDkhf ○ ηX′(◇a) = ηX ○Mkr(opn f)(◇a). This proves that
the diagram commutes.

Applying proposition A.6 to the previous proposition yields the following corollary.

3.46 Corollary. There is a dual equivalence

Alg(Mkr) ≡op Coalg(Dkh).
The functor Dkh is the analog of the monotone functor from example 2.7 and gives

rise to monotone logic on compact Hausdorff spaces. The fact that for both Vkh and
Dkh the functor given on objects by taking a free frame modulo the axioms of the logic,
suggests that KHaus is the most suitable base category for coalgebraic geometric logic.

The functor M whose restriction is dual to Dkh is defined for arbitrary frames, not just
for compact regular frames. Similarly, the action of Dkh on objects could be applied to
any topological space, not just to compact Hausdorff spaces. (As we have seen in lemma
2.39 the morphisms, as they are defined now, do rely on the fact that we work over the
category of compact Hausdorff spaces.) We have not been able to extend the duality
from theorem 3.41 to either sober spaces and spatial frames, or compact sober spaces
and compact spatial frames. Even more important, we have not found a proof that D
preserves sobriety or that M preserves spatiality. Neither have we found counterexamples
showing that it is false. We leave this as an interesting open question.

For the Vietoris functor and its dual more is known, for an overview see [58]. However,
we still do not know whether the Vietoris functor preserves sobriety, even less so if there
is a dual equivalence with an endofunctor on SFrm that holds in this generality.

A third example of a functor which induces logic on compact Hausdorff-coalgebras is
that of the conditional functor. This functor gives rise to a duality similar to the duality
from theorem 3.41 and will be treated in chapter 5.
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3.4 Bisimulations

In this section we give various notions of bisimulations between models for coalgebraic
geometric logic and compare them. As in section 3.2 we use the symbol C to denote
either of the categories Sob, KSob and KHaus.

3.47 Definition. Let T be an endofunctor on C. An Aczel-Mendler bisimulation
between two geometric T-models is an Aczel-Mendler bisimulation B between the un-
derlying T-coalgebras such that for all (x,x′) ∈ B and p ∈ Φ, x ∈ V (p) iff x′ ∈ V ′(p). We
say that two states x and x′ are Aczel-Mendler bisimilar and write x - x′ if there is an
Aczel-Mendler bisimulation linking them. ◁

The following lemma is an immediate consequence of proposition 3.20.

3.48 Lemma. Let T be a functor on C, Λ a geometric modal signature for T and x and
x′ states in two X,X′ two geometric T-models. Then x - x′ implies x ≡Λ x

′.

If Λ is characteristic and C = Sob or C = KSob, it follows from the previous lemma com-
bined with theorems 3.22 and 3.34 that Aczel-Mendler bisimilarity implies behavioural
equivalence. If moreover T preserves weak pullbacks, the converse holds as well. The
proof of this is similar to theorem 4.3 and the preceding discussion in [49].

However, we do not wish to make this assumption. For example, the Vietoris functor
does not preserve weak pullbacks [9, Corollary 4.3]. Similarly to section 2.3 we define
Λ-bisimulations for C-coalgebras. They are an adaptation of ideas in [6, 17]. Under some
conditions on Λ, Λ-bisimilarity coincides with behavioural equivalence for any T.

3.49 Definition. Let T be an endofunctor on C, Λ a geometric modal signature for T
and X = (X,γ,V ) and X′ = (X′,γ′,V ′) geometric T-models. A Λ-bisimulation between
X and X′ is a relation B ⊆ UX × UX′ such that for all (x,x′) ∈ B and p ∈ Φ and all
B-coherent pairs of opens (ai,a′i) ∈ ΩX ×ΩX′ we have

x ∈ V (p) iff x′ ∈ V ′(p)

and
γ(x) ∈ λX(a1, . . . ,an) iff γ′(x′) ∈ λX′(a′1, . . . ,a′n). (3.5)

Two states are called Λ-bisimilar if there is a Λ-bisimulation linking them, notation:
x - x′. ◁

3.50 Remark. Let T be an endofunctor on C, Λ a geometric modal signature for T and
X = (X,γ,V ) and X′ = (X′,γ′,V ′) geometric T-models. Suppose B ⊆ X ×X′ with the
subspace topology is an object in C. Let π ∶ B → X and π′ ∶ B → X′ be the respective
projections and

P opn(X′)

opn(X) opn(B)

π′

π opn(π′)

opn(π)

the pullback diagram of the cospan (opn(π), opn(π′)) in Frm. Then a pair (a,a′) ∈
ΩX × ΩX′ is B-coherent if and only if it is in P. If we unravel the definitions we find
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that equation 3.5 holds if and only if for all λ ∈ Λ the following diagram commutes:

opn(X)n Pn opn(X′)n

opn(TX) opn(TX′)

opn(X) opn(B) opn(X′)

λX

(π)n (π′)n

λX′

opn(γ) opn(γ′)

opn(π) opn(π′)

(3.6)

This point of view elucidates the similarity with Λ-bisimilarity for set-based coalgebras
in [6].

As is to be expected, Λ-bisimilar states satisfy the same formulas.

3.51 Lemma. Let T be an endofunctor on C and Λ a geometric modal signature for T.
Then -Λ ⊆ ≡Λ.

Proof. Suppose x ∈ X and x′ ∈ X′ are Λ-bisimilar and B a Λ-bisimulation with xBx′. We
will show that for all formulas ϕ we have X,x ⊩ ϕ iff X′,x′ ⊩ ϕ using induction on the
complexity of the formula. The propositional case is by definition. If ϕ is a finite meet or
an arbitrary join of formulas then the lemma is obvious. Suppose X,x ⊩ ♡λ(ϕ1, . . . ,ϕn),
then γ(x) ∈ λX(Jϕ1KX, . . . , JϕnKX). We have B[JϕiKX] ⊆ JϕiKX

′

by the induction hypoth-
esis, so by definition of a Λ-bisimulation we find γ′(x′) ∈ λX′(Jϕ1KX

′

, . . . , JϕnKX
′) and

hence X′,x′ ⊩ ♡λ(ϕ1, . . . ,ϕn). The converse direction is proven symmetrically.

It turns out that the collection of Λ-bisimulations between two geometric T-models
forms a complete lattice.

3.52 Proposition. Let Λ be a geometric modal signature of a functor T ∶ C → C and
let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be two geometric T-models. The collection of
Λ-bisimulations between X and X′ forms a complete lattice.

Proof. It is obvious that the collection of Λ-bisimulations is a poset. We will show
that this collection is closed under taking arbitrary unions; the result then follows from
theorem 4.2 in [12].

Let I be some index set and for all j ∈ J let Bj be Λ-bisimulations between X and
X′ and set B = ⋃j∈J Bj . We claim that B is a Λ-bisimulation.

Let (ai,a′i) be a B-coherent pairs of opens. Suppose xBx′ and γ(x) ∈ λX(a1, . . . ,an).
Then there is j ∈ J with xBjx

′. As Bj[ai] ⊆ B[ai] ⊆ a′i and B−1
j [a′i] ⊆ B−1[a′i] ⊆ ai,

all B-coherent pairs (ai,a′i) are also Bj-coherent. As Bj is a Λ-bisimulation we have
γ′(x′) ∈ λX′(a′1, . . . ,a′n).

Every Aczel-Mendler bisimulation is a Λ-bisimulation.

3.53 Proposition. Let T be an endofunctor on C and Λ a geometric modal signature
for T. Then - ⊆ -Λ.

Proof. Suppose B is an Aczel-Mendler bisimulation and let β be the map that turns B
into a coalgebra, then the following diagram commutes:

X B X′

TX TB TX′

γ

π π′

β γ′

Tπ Tπ′

(3.7)
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We will show that B is a Λ-bisimulation. By definition x ∈ V (p) iff x′ ∈ V ′(p)
whenever xBx′. We prove the forth condition from definition 3.49. Let λ ∈ Λ and
(x,x′) ∈ B. Suppose (a1,a′1), . . . , (an,a′n) are B-coherent pairs of opens and γ(x) ∈
λX(a1, . . . ,an). Then we have

β(x,x′) ∈ (Tπ)−1(λX(a1, . . . ,an)) (follows from (3.7))

= λB(π−1(a1), . . . ,π−1(anλ)) (naturality of λ)

⊆ λB((π′)−1 ○ π′[π−1(a1)], . . . , (π′)−1 ○ π′[π−1(an)]) (monotonicity of λ)

= λB((π′)−1(B[a1]), . . . , (π′)−1(B[an])) (B[a] = π2 ○ π−1
1 (a))

⊆ λB((π′)−1(a′1), . . . , (π′)−1(a′n)) (monotonicity of λ)

= (Tπ′)−1(λX′(a′1, . . . ,a′n)). (naturality of λ)

Therefore
γ′(x′) = (Tπ′)(β(x,x′)) ∈ λX′(a′1, . . . ,a′nλ),

as desired.

It follows from lemma 3.51 and theorem 3.22 that, provided Λ is a characteristic
geometric modal signature for an endofunctor T on Sob or KSob, Λ-bisimilarity im-
plies behavioural equivalence. In order to prove a converse statement we need a slight
strengthening of the definition of open predicate liftings. We define the notion of a strong
open predicate lifting in the next definition and subsequently prove that for strong mono-
tone sets of predicate liftings, behavioural equivalence implies Λ-bisimilarity.

3.54 Definition. Let T be an endofunctor on C. A strong open predicate lifting
for T is a natural transformation

λ ∶ P̆n ○U→ P̆ ○U ○T

such that for objects X in C and a1, . . . ,an ∈ ΩX the set λX(a1, . . . ,an) is open in TX.
A strong open predicate lifting λ is said to be monotone in its i-th argument if for
all (not necessarily open) subsets a1, . . . ,an, b ∈ P̆(UX) we have λX(a1, . . . ,ai, . . . ,an) ⊆
λX(a1, . . . ,ai∪b, . . . ,an) and it is called monotone if it is monotone in every argument.
The dual of a strong open predicate lifting λ is λ∂ defined by

λ∂X(a1, . . . ,an) = X ∖ λX(X ∖ a1, . . . ,X ∖ an).

A collection of strong open predicate liftings Λ is called a strong geometric modal
signature. A strong geometric modal signature is closed under duals if λ ∈ Λ implies
λ∂ ∈ Λ and characteristic if for every X in C the collection

{λX(a1, . . . ,an) ∣ λ ∈ Λ n-ary,ai ∈ ΩX}

forms a sub-base for the topology on TX. ◁

It follows immediately from the definitions that every strong open predicate lifting
restricts to a “normal” open predicate lifting. We call an open predicate lifting λ strong
if there exists a strong open predicate liftings that restricts to λ and strong monotone
if there exists a monotone strong open predicate lifting that restricts to it. A geometric
modal signature is called strong monotone if every open predicate lifting in it is strong
monotone.
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3.55 Example. The box- and diamond-lifting for both basic modal logic and monotone
modal logic are strong monotone open predicate liftings. ◁

The proof of the following proposition is similar to the proof of proposition 2.34 and
is inspired by the proof of theorem 4.1 in [16].

3.56 Proposition. Let T be an endofunctor on C and Λ a strong monotone geometric
modal signature for T. Let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be two T-models. Then
≃Coalg(T) ⊆ -Λ.

Proof. Suppose x and x′ are behaviourally equivalent. Then there is some geometric
T-model U = (U,ν,VU) and there are T-model morphisms f ∶ X→ U and f ′ ∶ X′ → U such
that f(x) = f ′(x′). We will define a Λ-bisimulation B linking x and x′.

Let B be the pullback of f and f ′ in Top,

B = {(u,u′) ∈X ×X ′ ∣ f(u) = f ′(u′)}.

Then clearly xBx′. It follows from proposition 3.20 that u and u′ satisfy precisely the
same formulas whenever (u,u′) ∈ B.

Suppose λ ∈ Λ is n-ary and for 1 ≤ i ≤ n let (ai,a′i) be a B-coherent pair of opens.
Suppose uBu′ and γ(u) ∈ λX(a1, . . . ,an). We will show that γ′(u′) ∈ λX′(a′1, . . . ,a′n),
the converse direction is similar. By monotonicity and naturality of λ we obtain

γ(u) ∈ λX(a1, . . . ,an) ⊆ λX(f−1(f[a1]), . . . , f−1(f[an])) = (Tf)−1(λY(f[a1], . . . , f[an])),

so (Tf)(γ(u)) ∈ λY(f[a1], . . . , f[an]). (Note that the f[ai] need not be open in Y, but
λY(f[a1], . . . , f[an]) is defined because λ is assumed to be strong.) Since f and f ′ are
coalgebra morphisms and f(u) = f ′(u′) we have (Tf)(γ(u)) = δ(f(u)) = δ(f ′(u′)) =
(Tf ′)(γ′(u′)). Coherence of (ai,a′i) and monotonicity and naturality of λ yield

γ′(u′) ∈ (Tf ′)−1(λY(f[a1], . . . , f[an]))
= λX′((f ′)−1(f[a1]), . . . , (f ′)−1(f[an])) (naturality of λ)

= λX′(B[a1], . . . ,B[an]) (strong monotonicity of λ)

⊆ λX′(a′1, . . . ,a′n). (coherence of (ai,a′i))

This proves the proposition.

Let T be an endofunctor on C and Λ a geometric modal signature for T. The following
diagram summarises the results from theorems 3.22, 3.34 and 3.34, lemma 3.51 and
proposition 3.56. The arrows indicate that one form of equivalence implies the other.
The numbers indicate that the implication is under a certain condition.

- -Λ ≡Λ ≃Coalg(T)
(2)

(1)

(3)

Here (1) holds if T preserves weak pullbacks, (2) is true when T is a functor on Sob or
a functor on KSob, and Λ is characteristic, and (3) holds when Λ is strong. This yields
the following theorem.
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3.57 Theorem. Let T be an endofunctor on Sob and Λ a characteristic strong monotone
geometric modal signature.

(i) If x and x′ are two states in two geometric T-models, then

x -Λ x
′ iff x ≡Λ x

′ iff x ≃Mod(T) x
′.

(ii) If T restricts to the endofunctor TKSob on KSob and x,x′ are two states in two
geometric TKSob-models, then

x -Λ x
′ iff x ≡Λ x

′ iff x ≃Mod(TKSob)
x′.

(iii) If T restricts to the endofunctor TKHaus on KHaus and x and x′ are two states in
two geometric TKHaus-models, then

x -Λ x
′ iff x ≡Λ x

′.

3.58 Remark. A priori, we cannot apply the previous theorem to the monotone functor
Dkh. However, we will see in example 4.9 that Dkh is the restriction of a certain functor
on Sob.

From the point of view of bisimulations, the category of sober spaces and continuous
maps seems to be an appropriate base category for coalgebraic geometric logic. However,
we saw in section 3.3 that looking at concrete examples suggests that the category
of compact Hausdorff spaces is a natural choice of base category. We leave it as an
interesting direction for further research to investigate how these concrete examples of
functors fit in the general theory we have developed.
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4

Lifting functors

This chapter is devoted to lifting endofunctors from Set to the categories Sob and Stone.
A functor T together with a set of predicate liftings Λ for T induces a functor on Sob
and on Stone, each accompanied by a set of open respectively clopen predicate liftings.
This will give rise to analogs of set-based frames. For example, the functor Dst (from
definition 2.38) corresponding to descriptive monotone frames is the lift of the functor
D (see example 2.7) with respect to a certain set of predicate liftings.

Section 4.1 presents a way of lifting set functors with respect to a set of predicate
liftings Λ to functors on Sob. This is inspired by the method of lifting a set functor to
a functor on Stone from [36], which is presented in section 4.2.

A different method of lifting a set functor to a functor on Frm has been developed in
[57]. This trivially yields a lifted functor Sob→ Sob by using the duality between frames
and topological spaces (see section 3.1). The two differences of this way of lifting with
the method that we present in section 4.1 is that is does not depend on a set of predicate
liftings, but it does put restrictions on the functor T that is being lifted. We suspect a
connection between these two ways of lifting a set functor to a sober functor, and leave
this as an interesting open question.

In section 4.2 and 4.3 set functors are lifted to Stone functors in two ways. The
first way is a reformulation of the method in [36] and is similar to the procedure in
section 4.1. It relies on a given collection of predicate liftings Λ. The second way (lift
via pro-completions) only works for a certain class of set functors, but does not depend
on a collection of predicate liftings. We prove that for such a T and a suitable choice of
Λ the two ways of lifting coincide on objects (theorem 4.24) thus partially answering a
question posed in the conclusion of [36].

4.1 From Set to Sob

In this section we lift a functor T ∶ Set → Set together with a set of predicate liftings Λ
for T to a functor T̈Λ ∶ Top→ Top which restricts to T̈Λ ∶ Sob→ Sob. To define the action
of T̈Λ on objects, for a topological space X we take the following steps:

Step 1. Construct a frame of the images of predicate liftings applied to the open sets of
X (viewed simply as subsets of T(UX)), this is ḞΛX;

Step 2. Quotient ḞΛX with a suitable relation that ensures b∈B λ(b) = λ( B) whenever
λ is monotone;

Step 3. Employ the functor pt ∶ Frm→ Sob to obtain a sober topological space.
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This is the content of definitions 4.1, 4.3 and 4.5. It is an adaptation of section 4 in [36].
Recall that U is the forgetful functor which sends a topological space to its underlying

set, and Q is the contravariant functor sending a set to its powerset Boolean algebra.

4.1 Definition. Let T ∶ Set → Set be a functor and Λ a collection of predicate liftings
for T. We define a contravariant functor ḞΛ ∶ Top → Frm. For a topological space X

define ḞΛX to be the subframe of Q(T(UX)) generated by the set

{λUX(a1, . . . ,an) ∣ λ ∈ Λ n-ary, a1, . . . ,an ∈ ΩX}.

That is, we close this set under finite intersections and arbitrary unions in Q(T(UX)).
For a continuous function f ∶ X → X′ let ḞΛf ∶ ḞΛX

′ → ḞΛX be the restriction of
Q(T(Uf)) to ḞΛX

′. ◁

4.2 Lemma. The map ḞΛ defines a contravariant functor.

Proof. We need to show that ḞΛ is well defined on morphisms and that it is functoral.
To show that the action of ḞΛ on morphisms is well-defined, it suffices to show that
(ḞΛf)(λUX(a′1, . . . ,a′n)) ∈ ḞΛ(X) for all generators λUX(a′1, . . . ,a′n) of ḞΛX

′, because
frame homomorphisms preserve finite meets and all joins. This holds by naturality of λ:

(ḞΛf)(λUX′(a1, . . . ,an)) = (Tf)−1(λUX′(a1, . . . ,an)) = λUX(f−1(a1), . . . , f−1(an)).

By continuity of f we have f−1(ai) ∈ ΩX so the latter is indeed in ḞΛX. Functoriality
of ḞΛ follows from functoriality of Q ○T ○U.

4.3 Definition. Let Λ be a collection of predicate liftings for a set functor T and let X

be a topological space. Let F̈ΛX be the quotient of ḞΛX with respect to the congruence
∼ generated by

b∈B λ(a1, . . . ,ai−1, b,ai+1, . . . ,an) ∼ λ(a1, . . . ,ai−1, B,ai+1, . . . ,an)

for all ai ∈ ΩX, B ⊆ ΩX directed, and λ ∈ Λ monotone in its i-th argument. Write
qX ∶ ḞΛX → F̈ΛX for the quotient map and [x] for the equivalence class in F̈ΛX of an
element x ∈ ḞΛX. For a continuous function f ∶ X → X′ define F̈Λf ∶ F̈ΛX

′ → F̈ΛX ∶
[λUX(a1, . . . ,an)]↦ [ḞΛ(λUX(a1, . . . ,an))]. ◁

4.4 Lemma. The assignment F̈Λ defines a functor.

Proof. We need to prove functoriality of F̈Λ and that F̈Λf is well defined for every
continuous map f ∶ X→ X′.

In order to show that F̈Λ is well defined, it suffices to show that F̈Λf is invariant
under the congruence ∼. If f ∶ X→ X′ is a continuous, then

b∈B(ḞΛf)(λUX′(a1, . . . ,ai−1, b,ai+1, . . . ,an))
= b∈B(Tf)−1(λUX′(a1, . . . ,ai−1, b,ai+1, . . . ,an))
= b∈B λUX′(f−1(a1), . . . , f−1(ai−1), f−1(b), f−1(ai+1), . . . , f−1(an))
∼ λUX′(f−1(a1), . . . , f−1(ai−1), f−1( B), f−1(ai+1), . . . , f−1(an))
= ḞΛf(λUX′(a1, . . . ,ai−1, B,ai+1, . . . ,an))

so F̈Λf is indeed invariant under the congruence. In the ∼-step, we use that {f−1(b) ∣
b ∈ B} is directed in ΩX. Functoriality of F̈Λf follows from functoriality of Q ○T ○U. So
F̈Λ ∶ Top→ Frm is a functor.
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We are now ready to define the sober Kupke-Kurz-Pattinson lift to Sob for a functor
on Set.

4.5 Definition. Define the sober Kupke-Kurz-Pattinson lift (KKP lift for short)
of T with respect to Λ to be the functor

T̈Λ = pt ○F̈Λ.

This is a functor Top → Top and because pt lands in Sob it restricts to an endofunctor
on Sob. We shall view T̈Λ as an endofunctor on Sob. ◁

The next definition and lemma describe how to lift a predicate lifting to an open pred-
icate lifting. Recall that Z is the forgetful functor which sends a frame to its underlying
set.

4.6 Definition. Let Λ be a collection of predicate liftings for a set functor T. A predicate
lifting λ ∶ P̆n → P̆ ○T in λ induces an open predicate lifting λ̈ ∶ Ω→ Ω ○ T̈ for T̈ via

ΩnX Z(ḞΛX) Z(F̈ΛX) Ω(pt(F̈ΛX)) = Ω(T̈X).λUX qX
ZkF̈ΛX

By λUX actually means the restriction of λUX to ΩnX ⊆ P̆(UX). The map kFX is the
frame homomorphism given by a ↦ {p ∈ pt(FΛX) ∣ p(a) = 1}. Let Λ̈ = {λ̈ ∣ λ ∈ Λ} be the
collection of lifted predicate liftings. Then Λ̈ is a geometric modal signature for T̈Λ. ◁

4.7 Lemma. The assignment λ̈ is a natural transformation.

Proof. Let f ∶ X → X′ be a continuous function, then the following diagram commutes
in Set,

ΩnX′ Z(ḞΛX
′) Z(F̈ΛX

′) Ω(pt(F̈ΛX
′))

ΩnX Z(ḞΛX) Z(F̈ΛX) Ω(pt(FΛX))

(f−1)n

λUX′ ZqX′

f−1 f−1

ZkF̈ΛX′

Ω(pt(f−1))

λUX ZqX ZkF̈ΛX

Commutativity of the left square follows from naturality of λ, commutativity of the
middle square follows from the proof of lemma 4.4 and commutativity of the right square
can be seen as follows: let a′1, . . . ,a′n ∈ ΩX, then

Ω(pt(f−1)) ○ZkFΛX
′(λUX′(a′1, . . . ,a′n)) = {q ∈ pt(FΛX) ∣ q ○ f−1(λUX′(a′1, . . . ,a′n)) = 1}

= ZkFΛX(f−1(λUX′(a′1, . . . ,a′n))).

So λ̈ is an open predicate lifting.

The nature of the definitions of T̈ and Λ̈ yields the following desirable result.

4.8 Proposition. Let T ∶ Set → Set be a functor and Λ a collection of predicate liftings
for T. Then Λ̈ is characteristic for T̈Λ.

Proof. Let X be a sober space. We need to show that the collection

{λ̈(a1, . . . ,an) ∣ λ ∈ Λ n-ary,ai ∈ ΩX} (4.1)
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forms a subbase for the topology on T̈ΛX. An arbitrary open set of T̈ΛX is of the
form x̃ = {p ∈ pt(F̈ΛX) ∣ p(x) = 1}, for x ∈ F̈ΛX. An arbitrary element of F̈ΛX is the
equivalence class of an arbitrary union of finite intersections of elements of the form
{λUX(a1, . . . ,an), for λ ∈ Λ and a1, . . . ,an ∈ ΩX. So we may write

x =⋃
i∈I

(⋂
j∈Ji

[λi,jUX(ai,j1 , . . . ,ai,jni,j)])

for some possibly index set I, finite index sets Ji, λ
i,j ∈ Λ and open sets a

i,j
k ∈ ΩX.

Unraveling the definitions gives

x̃ =⋃
i∈I

( ⋂
j∈Ji

[λi,jUX(ai,j1 , . . . ,ai,jni,j)]
:

)

=⋃
i∈I

( ⋂
j∈Ji

λ̈i,j
X

(ai,j1 , . . . ,ai,jni,j))

This shows that the open sets in (4.1) indeed form a subbase for the open sets of T̈ΛX.

Let us put our theory to action to (re)obtain the monotone functor on KHaus from
definition 2.38.

4.9 Example (The monotone functor). Recall the set functor D from example 2.7:
D ∶ X → {W ∈ P̆P̆X ∣ W is up-closed under inclusion order}. The box and diamond are
given by the predicate liftings λ◻,λ◇ ∶ P̆→ P̆ ○D defined by

λ◻X(a) ∶= {W ∈ DX ∣ a ∈W}, λ◇X(a) ∶= {W ∈ DX ∣ (X ∖ a) ∉W},

where X ∈ Set. Furthermore recall from definition 3.37 that for a compact Hausdorff
space X the space DkhX is the subset of D(UX) of collections of sets W satisfying for
all u ⊆ UX that u ∈W iff there exists a closed c ⊆ u such that every open superset of c
is in W . So U(DkhX) ⊆ D(UX). The set DkhX is topologised by the subbase

}a ∶= {W ∈ DkhX ∣ a ∈W}, }a ∶= {W ∈ DkhX ∣ (X ∖ a) ∉W}.

By theorem 3.41 the functor M ∶ Frm→ Frm from definition 3.39 is such that M(opnX) ≅
opn(DkhX) whenever X is a compact Hausdorff space.

Let X be a compact Hausdorff space. We claim that F̈{λ◻,λ◇}X = opn(DkhX). Define

a map ϕ ∶ M(opnX) → F̈{λ◻,λ◇}X on generators by ◻a ↦ [λ◻(a)] and ◇a ↦ [λ◇(a)].
This is well-defined because the [λ◻(a)], [λ◇(a)] satisfy relations (M1) – (M6) from
definition 3.39 and it is surjective because the image of ϕ contains the generators of
F̈{λ◻,λ◇}X.

So we only need to show injectivity of ϕ. Our strategy to prove this is to define a
map ψ ∶ F̈{λ◻,λ◇}X → opn(DkhX) and show that it is inverse to ϕ on the level of sets.
Since a set-theoretic inverse suffices we do not need to prove that ψ is a homomorphism;
we just want it to be well-defined. Instead of defining ψ ∶ F̈{λ◻,λ◇} → opn(DkhX) directly,

we will give a well-defined map ψ′ ∶ Ḟ{λ◻,λ◇}X → opn(DkhX) whose kernel contains the

kernel of the quotient map qX ∶ Ḟ{λ◻,λ◇} → F̈{λ◻,λ◇}X. This then yields the map ψ we
require. In a diagram:

Ḟ{λ◻,λ◇}X opn(DkhX)

F̈{λ◻,λ◇}X

ψ′

qX ψ (4.2)
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Define ψ′ ∶ Ḟ{λ◻,λ◇}X →M(opnX) on generators by λ◻(a) ↦ }a and λ◇(a) ↦ }a.
In order to show that this assignments yields a well-defined map (hence extends to
a frame homomorphism by remark 3.3) we need to show that the presentation of an
element in Ḟ{λ◻,λ◇}X does not affect its image under ψ′. That is, if

⋃
i∈I

( ⋂
j∈Ji

λ◻(ai,j) ∩ ⋂
j′∈J ′i

λ◇(ai,j′)) = ⋃
k∈K

( ⋂
`∈Lk

λ◻(ak,`) ∩ ⋂
`′∈L′

k

λ◇(ak,`′)), (4.3)

where Ji,J
′
i ,Lk and L′k are finite index sets, then

⋃
i∈I

(⋂
j∈J

ψ′(λ◻(ai,j)) ∩ ⋂
j′∈J ′

ψ′(λ◇(ai,j′))) = ⋃
k∈K

(⋂
`∈L

ψ′(λ◻(ak,`)) ∩ ⋂
`′∈L′

ψ′(λ◇(ak,`′))).

As stated we have U(DkhX) ⊆ D(UX). Observe

ψ′(λ◻(a)) = }a = {W ∈ D(UX) ∣ a ∈W} ∩U(DkhX) = λ◻(a) ∩U(DkhX).

and similarly ψ′(λ◇(a)) = λ◇(a) ∩U(DkhX). Suppose the identity in (4.3) holds, then
we have

⋃
i∈I

(⋂
j∈J

ψ′(λ◻(ai,j)) ∩ ⋂
j′∈J ′

ψ′(λ◇(ai,j′)))

=⋃
i∈I

(⋂
j∈J

(λ◻(ai,j) ∩U(DkhX)) ∩ ⋂
j′∈J ′

(λ◇(ai,j′) ∩U(DkhX)))

=⋃
i∈I

(U(DkhX) ∩ ⋂
j∈J

λ◻(ai,j) ∩ ⋂
j′∈J ′

λ◇(ai,j′))

= U(DkhX) ∩⋃
i∈I

(⋂
j∈J

λ◻(ai,j) ∩ ⋂
j′∈J ′

λ◇(ai,j′))

= U(DkhX) ∩ ⋃
k∈K

(⋂
`∈L

λ◻(ak,`) ∩ ⋂
`′∈L′

λ◇(ak,`′))

= ⋃
k∈K

(⋂
`∈L

ψ′(λ◻(ak,`)) ∩ ⋂
`′∈L′

ψ′(λ◇(ak,`′))).

So ψ′ is well defined.
It is easy to see that b∈B λ(b) ∼ λ( B) implies ( b∈B λ(b),λ( B)) ∈ ker(ψ) for

λ ∈ {λ◻,λ◇}. Since these pairs generate of the congruence from definition 4.3, we have
∼ = ker(qX) ⊆ ker(ψ′) and hence there exists a map ψ ∶ F̈{λ◻,λ◇}X → opn(T̂X) such
that the diagram in (4.2) commutes. Therefore ψ is (well) defined on generators by
[λ◻(a)] ↦ ◻a and [λ◇(a)] ↦ ◇a. One can easily check that ψ ○ ϕ = id and ϕ ○ ψ = id
by looking at the action on the generators. It follows that ϕ is injective.

This entails that for compact Hausdorff spaces X,

D̈{λ◻,λ◇}X = DkhX,

Furthermore, it can be seen that for continuous maps f ∶ X → X′ we have F{λ◻,λ◇}f =
opn(Dkhf). As a consequence, when restricted to KHaus we have

(D̈{λ◻,λ◇})↾KHaus = Dkh,

that is, lifting the monotone functor on Set with respect to the box/diamond lifting
yields the monotone functor on KHaus from definition 3.37. ◁
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4.10 Example. Using similar techniques as in the previous example, one can show
that, when restricted to KHaus, the sober Kupke-Kurz-Pattinson lift of P with respect
to the usual box and diamond lifting coincides with the Vietoris functor. (An algebraic
description similar to the one in theorem 3.41 is given in definition 3.35. It is shown in
proposition III4.6 of [29] that this algebraic description is dual to Vkh.) ◁

A third example of this method of lifting functors can be found in section 5.2: The
functor on KHaus corresponding to geometric conditional frames arises as the restriction
of the lift of the functor C from example 2.10 with respect to the predicate liftings λ⇒,λ⇓

from example 2.22.

4.2 From Set to Stone

We turn our attention from sober spaces to Stone spaces. Let T ∶ Set→ Set be a functor
and Λ a collection of predicate liftings for T. Along the same lines as the previous section,
we construct a lifted version T̂Λ ∶ Stone→ Stone (the Kupke-Kurz-Pattinson lift).

4.11 Definition. Let T ∶ Set → Set be a functor and Λ a set of predicate liftings for T.
For a Stone space X let B̂ΛX be the sub-Boolean algebra of Q(TX) generated by the set

{λUX(a1, . . . ,an) ∣ λ ∈ Λ,a1, . . . ,an ∈ ClpX}. (4.4)

That is, B̂ΛX is obtained by closing the set in (4.4) under taking complements, finite
intersections and finite unions. For a continuous map f ∶ X→ X′ let B̂Λf ∶ B̂ΛX

′ → B̂ΛX

be the restriction of Q(Tf) to B̂ΛX
′. ◁

4.12 Lemma. The assignment B̂Λ defines a contravariant functor.

Proof. We need to show that B̂Λ is functorial and that B̂Λf is well defined for every
continuous function between Stone spaces f ∶ X→ X′. For the latter, it suffices to show
that for all generators λX′(a′1, . . . ,a′n) of B̂X′ we have (B̂Λf)(λX′(a′1, . . . ,a′n)) ∈ B̂ΛX,
because the homomorphism Q(Tf) (of which B̂Λf is a restriction) preserves taking
complements, finite intersections and finite unions. By naturality of λ we have

(B̂Λf)(λX′(a′1, . . . ,a′n)) = (Tf)−1(λX′(a′1, . . . ,a′n)) = λX(f−1(a′1), . . . , f−1(a′n))

and because the f−1(a′i) are clopen in X, the result is in B̂ΛX. Functoriality of B̂Λ

follows from functoriality of Q ○T.

4.13 Definition. Let T ∶ Set → Set be a functor and Λ a set of predicate liftings for T.
The Kupke-Kurz-Pattinson lift of T to Stone is

T̂Λ ∶= uf ○B̂Λ. ◁

4.14 Definition. Let Λ be a set of predicate liftings for a functor T. Then any λ ∶ P̆n →
P̆ ○T in Λ induces a clopen predicate lifting λ̂ ∶ Clp→ Clp ○T̂Λ for T̂Λ via

ClpnX Z(B̂ΛX) Clp(uf(B̂ΛX)) = Clp(T̂ΛX).λUX
ZkB̂ΛX

(To be precise, the domain of λUX is Qn(UX). We only need the restriction to ClpnX.
We still write λUX for this restriction in order to avoid clutter.) The map kFX is the
isomorphism given by Stone duality. Naturality of λ̂ follows from naturality of λ. ◁
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We state some properties of lifted predicate liftings, the proofs of which are left to
the reader.

4.15 Lemma. Let T be a set functor, Λ a collection of predicate liftings for T, T̂Λ the
KKP lift of T with respect to Λ and Λ̂ = {λ̂ ∣ λ ∈ Λ}.

(i) If λ ∈ Λ is monotone, then so is λ̂.

(ii) If Λ is monotone, then so is Λ̂.

(iii) If Λ is closed under duals, then so is Λ̂.

4.16 Remark ([50], proposition 43). As an instance of the Yoneda lemma, the n-ary
predicate liftings for a set functor T are in one-to-one correspondence with subsets of
T(2n). (The set 2n is the n-fold product of the two-element space 2 = {⊺,�}.) To an n-
ary predicate lifting λ assign the subset λ2n(π−1

1 ({⊺}), . . . ,π−1
n ({⊺})) ⊆ T(2n), where πi ∶

2n → 2 is the i-th projection. Conversely, for C ⊆ T(2n), the assignment λCX(a1, . . . ,an) ∶=
(T⟨χa1 , . . . ,χan⟩)−1[C] ⊆ TX yields a predicate lifting for T. The angled brackets denote
the tupling of the indicator functions χai .

The correspondence gives a canonical collection of predicate liftings for each set
functor T, namely the collection of all predicate liftings for T.

Example 10 in [36] states that P with the collection Λ of all predicate liftings gives
P̂Λ = Vst. A different way to obtain Vst as a lifted functor is by lifting P with respect
to the usual predicate lifting for box and diamond. Before we can show this in example
4.19, we need the following definition and lemma. For a proof we refer to [29, Section
III.4].

4.17 Definition. The map Nba ∶ BA→ BA is defined on an object B as the free Boolean
algebra generated by ◻a,◇a, (a ∈ B) subject to the relations

(V1) ◻⊺ = ⊺

(V3) ◻(a ∧ b) = ◻a ∧ ◻b

(V5) ◻(a ∨ b) ≤ ◻a ∨◇b

(V2) ◇� = �

(V4) ◇(a ∨ b) =◇a ∨◇b

(V6) ◻a ∧◇b ≤◇(a ∧ b)

For a homomorphism f ∶ B → B′ define Nbaf ∶ NbaB → NbaB
′ on generators by

Nba(◻a)↦ ◻(f(a)) and Nba(◇a)↦◇(f(a)). ◁

4.18 Lemma. If X is a Stone space and Vst is the Vietoris functor on Stone, then

χ ∶ clp(VstX)→ Nba(clpX)

defined on generators by }a ↦ ◻a and }a ↦◇a is an isomorphism.

We will now show that the Kupke-Kurz-Pattinson lift of the powerset functor P with
respect to the box- and diamond lifting (given below) yields the Vietoris functor on
Stone.

4.19 Example. Recall that for the powerset functor P, the box- and diamond-lifting
λ◻,λ◇ ∶ P̆→ P̆P are given by

λ◻X ∶ a↦ {b ∈ PX ∣ b ⊆ a}, λ◇X ∶ a↦ {b ∈ PX ∣ b ∩ a ≠ ∅}.
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Let X be a Stone space. We claim that P̂{λ◻,λ◇} = Vst.

Let X be a Stone space. We will show that B̂{λ◻,λ◇}X ≅ clp(VX). Define ϕ ∶
clp(VstX) → B̂{λ◻,λ◇}X on generators by }a ↦ λ◻(a) and }a ↦ λ◇a. By lemma 4.18

we may view ϕ as a morphism Nba(clpX) → B̂{λ◻,λ◇}X so in order to show that ϕ is
a well-defined Boolean algebra homomorphism, it suffices to show that the λ◻(a) and
λ◇(a) (where a ranges over ClpX) satisfy relation (V1) – (V6) from definition 4.17. We
leave this verification to the reader.

The map ϕ is surjective because the generators of B̂{λ◻,λ◇} are all in its image. So
we only need to show injectivity. Observe that, when seen as subsets of P(UX), we have

}a = λ◻(a) ∩VstX and } a = λ◇(a) ∩VstX.

Since λ◇ is the dual of λ◻, every element of clp(VstX) is a finite union of finite in-
tersections of generators (i.e. elements of the form }a,}a, where a ∈ clpX). (In-
deed, we do not need to take complements because the generators are closed under
complementation in X.) So we may write an arbitrary element x ∈ clp(VstX) as x =
⋃ni=1(⋂

mi
j=1 }ai,j ∩⋂

m′
i

j′=1}ai,j′). It is easy to see that x = ϕ(x)∩VstX. Therefore, if x,x′

are elements of clp(VstX) and ϕ(x) = ϕ(x′), then x = x′. This shows that ϕ is injective.
It follows from unraveling the definitions that P̂{λ◻,λ◇}f = Vstf when f is a continuous

map between Stone spaces. Therefore

P̂{λ◻,λ◇} = Vst,

that is, the Kupke-Kurz-Pattinson lift of P with respect {λ◻,λ◇} to Stone gives the
Vietoris functor on Stone. ◁

We have seen in example 4.10 that, when restricted to KHaus, the lift of P with respect
to {λ◻,λ◇} to a functor on Sob coincides with the Vietoris functor, i.e. (P̈{λ◻,λ◇})↾KHaus =
Vkh. This implies

(P̈{λ◻,λ◇})↾Stone = P̂{λ◻,λ◇}.

A natural question that arises is how T̈Λ compares to T̂Λ in general. We leave this as
an interesting open question.

We give another example.

4.20 Example. Let D be the monotone functor on Set and λ◻,λ◇ the usual predicate
liftings for D. Using similar reasoning as in example 4.19, it can be seen that D̂{λ◻,λ◇} =
Dst. ◁

In section 5.1 the objects of study are descriptive conditional frames. The functor
that corresponds to descriptive conditional frames can be obtained by lifting C from
example 2.10 with respect to the predicate liftings λ⇒,λ⇓ from example 2.22 to a Stone
functor. We will see that Ĉ{λ⇒,λ⇓} is not the restriction of C̈{λ⇒,λ⇓} to Stone.

4.3 The pro-completion lift from Set to Stone

In the final section of this chapter we define a different way to lift a certain class of set
functors to Stone functors and we compare this lift with the Kupke-Kurz-Pattinson lift
from definition 4.13. We assume that the set functor T that we work with sends finite
sets to finite sets and preserves cofiltered diagrams (that is, T sends cofiltered diagrams
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to cofiltered diagrams). Let FinSet and FinStone be the full subcategories of Set and
Stone whose objects are finite sets and finite Stone spaces, respectively. We make use of
the following important observations.

Observation 1. The category Stone is equivalent to the pro-completion of FinStone [29,
Theorem VI2.3]. Essentially, this means that every Stone space is an inverse limit of
finite Stone spaces. For details, see chapter VI of [29].

Observation 2. A topology on a finite set is a Stone topology if and only if it is the
discrete topology. Therefore every function between finite Stone spaces is continuous. It
follows that the category FinSet of finite sets and functions is isomorphic to the category
FinStone of finite Stone spaces and continuous functions.

Observation 3. Since T restricts to FinSet and FinSet is isomorphic to FinStone, the
restriction of T to FinSet defines a functor on FinStone.

Observation 4. A finite quotient qY ∶ X↠ Y of a Stone space X is simply a partition
of X into clopen subsets. For x ∈ X, let [x] be the equivalence class of x in Y. For each
[x] ∈ Y the set q−1

Y ([x]) is an element of this partition. Moreover, since Y is finite {[x]}
is clopen for each [x] ∈ Y, so by continuity of qY the set q−1

Y ([x]) ⊆ X is clopen in X.

Observation 5. The category BA has all limits and colimits because it is the category
of models of an algebraic theory (for details see [18]). Since Stone is dually equivalent
to BA it has all limits and colimits as well.

The first observation suggests that we could maybe define a functor T on Stone by
defining its action on finite Stone spaces and then taking the pro-completion. Although
there is a neat way of lifting T to a map on the collection of Stone spaces, we have not
yet found a suitable way of defining Tf , for morphisms f in Stone.

In the following definition we define the action of T on objects. When we say that Y

is a finite quotient of X, we take this literally, i.e. Y = X/∼ for some equivalence relation
∼ on X. Therefore, each finite quotient Y of X comes equipped with a unique quotient
map qY ∶ X→ Y.

4.21 Definition. Let T be a set functor which sends finite sets to finite sets. Let X be
a Stone space. Let C be the collection of finite quotients of X,

C = {Y ∣ Y is a finite quotient of X}.

For each Y ∈ C let qY ∶ X → Y be the unique corresponding quotient map. For all
Y,Y′ ∈ C, add to C those continuous maps f ∶ Y → Y′ that satisfy f ○ qY = qY′ , i.e. such
that the following commutes:

X

Y Y′

qY qY′

f

Then C is a diagram in Stone and in FinStone.
Let TC be the diagram obtained from applying T to the diagram C. Define TX to

be the categorical limit
lim←ÐTC

of the diagram TC in Stone (see figure 4.1). This exists by observation 5 above. We call
this the lift via pro-completion. ◁
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TX

⋯ T(UYi) T(UYj) ⋯
(T(Uf))

Figure 4.1: The coloured area represents the diagram TC.

Although, formally, a diagram in C is a functor F ∶ J → C, where J is some index
category, we shall think of a diagram as a collection of objects and morphisms between
them in C.

4.22 Definition. A diagram C in some category C is filtered if:

(i) For any two objects X,X ′ in C there exists an object Y and morphisms f ∶ X →
Y , f ′ ∶X ′ → Y in C; and

(ii) For any two parallel morphisms f , f ′ ∶X →X ′ in C there is a morphism g ∶X ′ → Y
in C such that gf = gf ′.

The definition of a cofiltered diagram is the same, but with the direction of the
morphisms reversed. ◁

The diagram C from definition 4.21 is cofiltered.

4.23 Lemma. Let X be a Stone space and C the diagram of finite quotients of X as
defined in definition 4.21. Then C is a cofiltered diagram.

Proof. For the first item of definition 4.22, suppose Y1 and Y2 are two finite quotients
of X. We may view them as finite partitions of X into clopen sets, say, Y1 = {a1, . . . ,an}
and Y2 = {b1, . . . , bm}. Let Y3 ∶= {ai ∩ bj ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Clearly the ai ∩ bj are
clopen in X, so Y is a finite partition of X, hence a finite quotient. Define fi ∶ Y3 → Yi
by fi([x]3) ↦ [x]i for i = 1, 2, where [x]i denotes the equivalence class of x in Yi. It is
easy to check that the fi are well defined and in C.

For the second item, let f1, f2 ∶ Y2 → Y1 be parallel morphisms in C. Then the
identity morphism on Y2 has the desired property:

X

Y2 Y2 Y1

q2
q2 q1

idY2 f2

f1

Indeed, for all [x]2 ∈ Y we have f1(idY2
([x]2)) = f1(q2(x)) = q1(x) = f2(q2(x)) =

f2(idY2
([x]2)).

The question whether this lift via pro-completions and the KKP lift coincide was
posed in the conclusion of [36]. We conclude this section by answering this question
affirmatively for the objects.
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4.24 Theorem. Let T be a set functor that restricts to FinSet and which preserves
cofiltered diagrams. Then on objects the canonical lift given in definition 4.21 and the
Kupke-Kurz-Pattinson lift of T to Stone with respect to the collection Λ of all predicate
liftings coincide.

Proof. Let X be a Stone space and C the collection of finite quotients as defined in
definition 4.21. We will compare the clopen set Boolean algebras of TX and T̂X. The
latter, B̂ΛX, is generated as a sub-Boolean algebra of QTUX by the elements

{λCX(a1, . . . ,an) ∣ n ≥ 0,C ⊆ T(2n),ai ∈ ClopX},

where λC denotes the n-ary predicate lifting corresponding to the subset C ⊆ T(2n),
cf. proposition 4.16. Abbreviate B̂ ∶= B̂ΛX. (Note that we implicitly use Stone duality
to say that clp(T̂X) = clp(uf B̂) = B̂.)

Let B be the clopen set Boolean algebra of TX. Then by the duality of Stone and BA
the Boolean algebra B is a colimit of the diagram opn(TC) in BA obtained by applying
clp ○T ○ U to the diagram C. (After applying T ○ U we view the objects as finite Stone
spaces rather than finite sets.)

Observe that, if we view T(U(Yi)) as a Stone space, we have clp(T(U(Yi))) =
Q(T(U(Yi))). Moreover, for all morphisms f in C we have (T(Uf))−1 = clp(T(Uf)) =
Q(T(Uf)). Accordingly, the map (T(Uqi))−1 ∶ clp(TYi) → QTUX is a Boolean algebra
morphism for each of the Boolean algebras clp(T(U(Yi))). Applying Q ○ T ○ U to the
diagram C shows that these morphisms commute with the morphisms in clp(TC). There-
fore, by the definition of a colimit, there exists a homomorphism f ∶ B → Q(T(UX)).
(See figure 4.2.)

Q(T(UX))

B = clp(TX)

⋯ clp(T(UYi)) clp(T(UYj)) ⋯

(T(Uqi))−1

(T(Uqj))−1

f

(T(Uf))−1

Figure 4.2: The coloured area represents the diagram clp(TC).

Let B be the sub-Boolean algebra of QTUX generated by the clopen sets (Tqi)−1(a)
where i ranges over I and a ranges over the clopens of Yi. Then im f = B. We will now
show that f is in fact injective, hence an isomorphism.

4.24.A Claim. We have an isomorphism of Boolean algebras B ≅ B.

Proof of claim. We already have an onto homomorphism f ∶ B → B, so we only need to
show that f is injective. By lemma A.8 it suffices to show that f(z) = � implies z = �
for all z ∈ B.

Given qi ∶ X → Yi, define ri ∶ Yi → X by choosing for each equivalence class in Yi a
representative. Then ri is a section of qi, that is, qi ○ ri = idYi .
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Let z ∈ clp(TX) = B such that f(z) = �. By lemma 4.23 the diagram C is cofiltered, so
since T preserves cofiltered diagrams the diagram TC with limit TX is cofiltered as well,
hence by duality the diagram clp(TC) with limit B is filtered. It follows from a routine
argument that z comes from some y ∈ clp(TYi) for some i ∈ I, so f(z) = (Tqi)−1(y). Then
(Tqi)−1(y) = �. As (Tri)−1 ○(Tqi)−1 = (T idYi)−1 = T idYi = idTYi , we see that (Tqi)−1 has
a left inverse, hence is injective. Therefore (Tqi)−1(y) = � implies y = � which in turn
implies z = �. So f is injective. ◇

So it suffices to compare B̂ and B, which are both sub-Boolean algebras of QTUX.

4.24.B Claim. Every generator of B̂ is in B, hence B̂ is a sub-Boolean algebra of B.

Proof of claim. Pick n ≥ 0, C ⊆ T(2n) and a1, . . . ,an ∈ ClpX and consider

λC(a1, . . . ,an) = (T⟨χa1 , . . . ,χan⟩)−1[C].

This is an arbitrary generator of B̂. We will show that λC(a1, . . . ,an) ∈ B. Recall
that χa1 is the indicator function X → 2 and ⟨χa1 , . . . ,χan⟩ is the tupling of indicator
functions.

For every a ∈ ClpX, let Ya be the finite quotient of X given by {a,X ∖ a} and
let qa be the corresponding quotient map. (This is well-defined because obviously qa
is continuous.) Let ik ∶ 2 → Yak be the isomorphism which sends ⊺ to the equivalence
class ak in Yk and � to X ∖ ak. Then the tupling i = ⟨i1, . . . , in⟩ is an isomorphism
i ∶ 2n → Ya1 ×⋯ × Yan is an isomorphism. Set q = ⟨qa1 , . . . , qan⟩. Then the upper square
in the left diagram below commutes.

Let F ∶= {⋂ni=1 bi ∣ bi ∈ Yai} and j ∶ Ya1 × ⋯ × Yan → F ∶ (b1, . . . , bn) ↦ ⋂ bi. Then F
is a finite quotient of X. Call the corresponding quotient map qF . The lower triangle in
the left diagram commutes by construction. Applying T to the left diagram yields the
right diagram.

X 2n

X Ya1 ×⋯ ×Yan

F

⟨χa1 ,...,χan ⟩

i

q

qF
j

TX T(2n)

TX T(Ya1 ×⋯ ×Yan)

TF

T⟨χa1 ,...,χan ⟩

Ti
Tq

TqF
Tj

Since i is an isomorphism, so is Ti. Now we get

(T⟨χa1 , . . . ,χan⟩)−1[C] = (Tq)−1[(Ti)[C]] = (TqF )−1 [Tj ○Ti[C]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊆TF

.

This shows that λC(a1, . . . ,an) ∈ B. Since this holds for any generator λC(a1, . . . ,an)
of B̂, we have B̂ ⊆ B. ◇

Our next claim is the converse of claim 4.24.B.

4.24.C Claim. Every generator of B is in B̂, hence B is a sub-Boolean algebra of B̂.

Proof of claim. Let Y = {a1, . . . ,an} and let qY ∶ X↠ Y be a finite quotient of X and let
B ⊆ TY be a subset. (Since TY is finite B is automatically clopen.) Then the following
diagram commutes
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X 2n

X Ya1 ×⋯ ×Yan

Y

⟨χa1 ,...,χan ⟩

i

q

qY
j

where q, i and j are as before. It is obvious that the diagram commutes. Apply T to
the diagram to see that

(Tq)−1[B] = (Tq)−1[(Tj)−1[B]] = (T⟨χa1 , . . . ,χan⟩)−1[(Ti)−1 ○ (Tj)−1[B]].

Note that (Ti)−1 ○ (Tj)−1[B] ⊆ T(2n). This proves that every generator of B is in B̂,
hence B ⊆ B̂. ◇

We conclude that the clopen set Boolean algebras of TX and T̂X coincide. Therefore
TX ≅ T̂X. This proves the theorem.

This concludes the general theory that we treat in this thesis. The next chapter will
consist of a case study where we will see parts of the developed theory in action.
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5

Coalgebraic conditional logic

Recall from section 2.2 that the modality ⇒ (the conditional arrow) expresses a notion
of conditionality which generally differs from the implication →, and a formula ϕ ⇒ ψ
may be thought of as “If ϕ holds, then usually ψ holds as well.” Conditional logics
have a long history and tradition in philosophical logic [53, 13, 54]. They are used in
various applications such as non-monotonic interference, belief change and the analysis
of intentions. For more information on conditional logic we refer to [13, 4, 42].

This chapter consists of two parts. The first part contains the generalisation of
conditional frames (from example 2.10) to descriptive conditional frames. We show that
these can be seen as coalgebras for a certain functor Cst on Stone and give an endofunctor
on BA dual to Cst. Also we generalise conditional bisimulations from [7] to descriptive
conditional bisimulations and show how they relate to Λ-bisimulations (where Λ is the
set of clopen predicate liftings that corresponds to conditional logic), modal equivalence
and behavioural equivalence.

In the second part we develop geometric conditional logic by adding two modalities,
⇒ and ⇓, to the language of geometric logic via predicate liftings. We generalise con-
ditional frames to geometric conditional frames, show that these are coalgebras for a
certain functor and give an Isbell dual of this functor.

5.1 Conditional logic on Stone-coalgebras

In this section we develop conditional logic on so-called descriptive conditional mod-
els. We define descriptive conditional models and show how they can be viewed as a
coalgebras. In subsection 5.1.2 we investigate duality with Boolean algebras. In sub-
section 5.1.3 we define descriptive conditional bisimulations, which are an adaptation of
ideas in [7], and we show that descriptive conditional bisimilarity coincides with modal
equivalence, behavioural equivalence and Λ-equivalence (for a suitable Λ).

5.1.1 Descriptive conditional models

Recall from definition 2.8 that a conditional frame is a pair (X,ν) where X is a set and
ν ∶ X × PX → PX a function satisfying certain properties. We extend this by adding
to such a pair a collection A ⊆ PX of admissible subsets of X. We require A to be a
Boolean algebra that is closed under certain properties, such that the truth set of every
formula (see definition 5.12) is in A. Besides, A will serve as the clopen subbase for a
topology on X. But this is jumping ahead; let us start with the definition of a general
conditional frame.
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5.1 Definition. A general conditional frame is a triple (X,ν,A) where

• X is a set;

• A ⊆ PX contains ∅ and X and is closed under Boolean operations and the map
mν ∶ A × PX → PX defined by

mν(a, b) ∶= {x ∈X ∣ ν(x,a) ⊆ b}

• ν ∶X ×A→ PX is a map that satisfies for all x ∈X and a, b ∈ A,

(i) if a ∩ b = ∅, then ν(x,a) ∩ b = ∅,

(ii) if a ⊆ b and ν(x, b) ⊆ a, then ν(x,a) = ν(x, b).

A general conditional frame morphism from (X,ν,A) to (X ′,ν′,A′) is a map
f ∶ X → X ′ such that f−1(a′) ∈ A for all a′ ∈ A′ and f[ν(x, f−1(a′))] = ν′(f(x),a′) for
all x ∈X,a′ ∈ A′.

A general conditional model is a tuple (X,ν,A,V ) where (X,ν,A) is a general
conditional frame and V ∶ Φ → A is a valuation of the proposition letters. A gen-
eral conditional model morphism f ∶ (X,ν,A,V ) → (X ′,ν′,A′,V ′) is a descriptive
conditional frame morphism f ∶ (X,ν,A)→ (X ′,ν′,A′) such that f−1 ○ V ′ = V . ◁

As in the set case (cf. remark 2.9) condition (i) is equivalent to ν(x,a) ⊆ a for all
x ∈X,a ∈ A.

5.2 Definition. Let X = (X,ν,A) be a general conditional frame. Write X for the
topological space with underlying set X and a topology generated by the subbase A,
and KX for the collection of closed subsets of X. Call a general conditional frame
differentiated if for all distinct x,x′ ∈ X there is a witness a ∈ A such that x ∈ a and
x′ ∉ a, closed if ν(x,a) ∈ KX for all x ∈ X and a ∈ A, and compact if ⋂A0 ≠ ∅
whenever A0 ⊆ A has the finite intersection property.

A descriptive conditional frame is a differentiated, closed, compact general con-
ditional frame. The category of descriptive conditional frames and general descriptive
frame morphisms is denoted by DCF. A descriptive conditional model is a general
conditional model whose underlying general conditional frame is descriptive. Let DCM
be the category whose objects are descriptive conditional models and whose morphisms
are general conditional model morphisms. ◁

It turns out that descriptive conditional frames can be viewed as coalgebras.

5.3 Definition. Let CstX be the set of maps h ∶ ClpX → KX such that for all a, b ∈
ClpX,

(C1) h(a) ⊆ a; and

(C2) if a ⊆ b and h(b) ⊆ a, then h(a) = h(b).
Endow CstX with a topology generated by the subbase

}(a, b) ∶= {h ∈ CstX ∣ h(a) ⊆ b}, }(a, b) ∶= {h ∈ CstX ∣ h(a) ∩ b ≠ ∅}

for a, b ∈ ClopX. Observe that CstX ∖ }(a, b) = }(a,X ∖ b), so this is in fact a clopen
subbase. For a continuous map f ∶ X → X′ between Stone spaces, define Cstf ∶ CstX →
CstX

′ by
Cstf(h)(a) = f[h(f−1(a))]

for h ∈ CstX and a ∈ ClpX. ◁
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5.4 Lemma. Let f ∶ X → X′ be a continuous map between Stone spaces. The map
Cstf ∶ CstX→ CstX

′ is well defined and continuous.

Proof. In order to prove that Cstf is well defined we need to show that for each h ∈ CstX

and a ∈ ClpX the set f[h(f−1(a))] ⊆ X′ is closed and that Cstf(h) satisfies (C1) and
(C2). Since a is clopen in X′, f−1(a) is clopen in X. By construction h(f−1(a)) is closed
in X, and since X is compact and X′ is Hausdorff, f is a closed map so f[h(f−1(a))]
is closed in X′. The map Cstf(h) satisfies (C1) and (C2) for similar reasoning as in
paragraph 2.10, hence it is indeed an element of CstX

′.
For continuity, it suffices to show that (Cstf)−1( }(a, b)) is clopen in CstX, whenever

a, b ∈ ClpX′. Unravelling the definitions yields

(Cstf)−1( }(a, b)) = {h ∈ CstX ∣ Cstf(h) ∈ }(a, b)}
= {h ∈ CstX ∣ Cstf(h)(a) ⊆ b}
= {h ∈ CstX ∣ f[h(f−1(a))] ⊆ b}
= {h ∈ CstX ∣ h(f−1(a)) ⊆ f−1(b)}
= }(f−1(a), f−1(b)).

Clearly the latter is clopen in CstX. This proves the lemma.

We have not yet proved that CstX is indeed a Stone space whenever X is. The next
two lemmas will show this.

5.5 Lemma. Let X = (X, τ) be a topological space. If X is zero-dimensional, then so is
CstX. If X is a Hausdorff space, then so is CstX.

Proof. CstX is zero-dimensional. Follows from the fact that the topology on CstX is
generated by a clopen subbase.

CstX is Hausdorff. Suppose X is a Hausdorff space and h ≠ h′ in CstX. Then
h(a) ≠ h′(a) for some a ∈ ClpX. Without loss of generality assume that there is
x ∈ h(a) such that x ∉ h′(a). Since X is a Stone space and h′(a) is closed in X, there is
a clopen b ∈ ClpX such that x ∈ b ⊆X∖h′(a). Let d ∶=X∖b, then h′(a) ⊆ d but h(a) /⊆ d,
because x ∉ d. Therefore h′ ∈ }(a, d) and h ∉ }(a, d). Furthermore h′ ∉ }(a, b) and
h ∈}(a, b), so CstX is a Hausdorff space.

Showing that CstX is a Stone space whenever X is a Stone space is more involved.

5.6 Lemma. Let X = (X, τ) be a Stone space. Then CstX is compact.

Proof. Let C′ be the collection of all functions h ∶ ClpX → KX topologized by the
subbase }(a, b) ∶= {h ∈ C′X ∣ h(a) ⊆ b} and }(a, b) ∶= {h ∈ C′X ∣ h(a) ∩ b ≠ ∅}, where
a, b range over ClpX. That is, we do not require the elements of C′X to satisfy (C1)
and (C2) from definition 5.3. We will first show that C′X is compact, and then that
CstX is a closed subset of C′X.

5.6.A Claim. Let X = (X, τ) be a compact topological space. Then C′X is compact as
well.

Proof of claim. Suppose

C′X =⋃
i∈I

}(ai, bi) ∪ ⋃
j∈J

}(cj , dj) (5.1)
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is a cover. Let A = {ai ∣ i ∈ I} and define B,C,D similarly. Let Dc = {d ∈ D ∣
}(c, d) is in the cover}. Define

h ∶ ClpX→KX ∶ a↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∅ if a ∉ A
X if a ∈ A and a ∉ C
X ∖⋃Da if a ∈ A ∩C

This element is in C′X, so it must be in the cover (5.1).
If h ∈ }(cj , dj) for some j ∈ J , then we must have h(cj) ∩ dj ≠ ∅. If cj ∉ A then

h(cj) = ∅ hence h(cj) ∩ dj = ∅. So this cannot be the case. Therefore we must have
cj ∈ A and h(cj) = (X ∖⋃Dcj) ∩ dj ≠ ∅. Since dj ∈Dcj , this is a contradiction; see figure
5.1. So we must have h ∈ }(ai, bi) for some i ∈ I.

X ∖⋃Dcj

dj

Figure 5.1: (X ∖⋃Dcj) ∩ dj = ∅

If h ∈ }(ai, bi) for some i ∈ I, then we must have h(ai) ⊆ bi. If ai ∉ C then h(ai) =X
hence bi = X (for otherwise h ∉ }(ai, bi)) and we are done, because }(ai,X) = C′X. So
suppose this is not the case, then we must have h(ai) = X ∖ ⋃Dai ⊆ bi. This implies
b ∪⋃Da = X, so by compactness of X we find a finite number d1, . . . , dn ∈Da such that

b ∪ d1 ∪⋯ ∪ dn = X.

As a result

}(a, b) ∪}(a, d1) ∪⋯ ∪}(a, dn) (5.2)

is a finite subcover of (5.1). (By construction all basic clopens in (5.2) are indeed basic
clopens in the cover (5.1).) To see this, we need to show that the finite cover in (5.2)
indeed covers all of C′X. Let g ∈ C′X be any element, then either g(a) touches one of
the di or g(a) ⊆ b, so (5.2) is indeed a cover.

It follows from the Alexander subbase theorem that C′X is compact. ◇

5.6.B Claim. Let X be a Stone space. Then CstX is a closed subspace of C′X.

Proof of claim. Let h ∈ C′X such that h ∉ CstX. Then either there exists a ∈ ClpX such
that h(a) /⊆ a or there are a ⊆ b in ClpX such that h(b) ⊆ a and h(a) ≠ h(b).

In the first case, }(a,X ∖ a) is an open neighbourhood of h in C′X disjoint from
CstX and we are done. In the second case we consider two subcases: If h(a) /⊆ h(b) there
exists x ∈ h(a) such that x ∉ h(b). Since X is (compact Hausdorff hence) regular and
has a clopen subbase we can find disjoint clopens c and d such that x ∈ c and h(b) ⊆ d

(see figure 5.2). But then

h ∈ }(b,a) ∩}(a, c) ∩ }(b, d),

which is open in C′X. Moreover, it is disjoint from CstX because a ⊆ b and for all
h′ ∈ }(b,a) ∩}(a, c) ∩ }(b, d) we have h(b) ⊆ a and h(a) ≠ h(b).

If h(b) /⊆ h(a) we can use similar reasoning to find disjoint clopens c and d such that
h(a) ⊆ c and x ∈ d. Then the clopen set }(b,a) ∩ }(a, c) ∩ }(b, d) contains h and is
disjoint from CstX. We conclude that C′X∖CstX is open, so CstX is closed in C′X. ◇
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h(a)
h(b)

d

c

Figure 5.2: The sets h(a),h(b), c and d in X.

Since closed subspaces of compact spaces are compact, this proves that CstX is
compact.

We now work our way towards proving that the category of descriptive conditional
frames is isomorphic to the category Coalg(Cst) of Cst-coalgebras.

5.7 Lemma. Let X = (X,ν,A) be a descriptive conditional frame. Let τA be the topology
on X generated by A and set X = (X, τA). Define γν ∶X → (ClpX→KX) by γν(x)(a) ∶=
ν(x,a). Then (X,γ) is a Cst-coalgebra.

Proof. The topological space X is zero-dimensional because it has a clopen basis, com-
pact because the frame X is compact and Hausdorff because X is differentiated. So X is
a Stone space.

We have γν(x)(a) ∈ KX for all a ∈ A because X is closed (that is, ν(x,a) ∈ KX

for all ∈ A). Also γν(x) satisfies (C1) and (C2) from definition 5.3 because ν satisfies
conditions (i) and (ii) from definition 5.1.

We need to show that γν is continuous. Since γ−1
ν preserves taking complements,

unions and intersections, it suffices to show that γ−1
ν ( }(a, b)) ∈ A for all a, b ∈ A. Let

}(a, b) be a clopen set in CstX, then

γ−1
ν ( }(a, b)) = {x ∈X ∣ γν(x) ∈ }(a, b)}

= {x ∈X ∣ γν(x)(a) ⊆ b}
= {x ∈X ∣ ν(x,a) ⊆ b}
=mν(a, b) ∈ A.

This shows that γν is continuous.

5.8 Lemma. Let X = (X, τ) and let (X,γ) be a Cst-coalgebra. Define νγ ∶X ×ClpX→
PX by νγ(x,a) ∶= γ(x)(a). Then (X,νγ ,ClpX) is a descriptive conditional frame.

Proof. Evidently, νγ is a map from X × ClpX to PX that satisfies (i) and (ii) from
definition 5.1 (because γ satisfies (C1) and (C2) from definition 5.3). It is obvious
that ClpX contains ∅ and X and that it is closed under taking finite unions, finite
intersections and complements. Let a, b ∈ ClopX, then

mνγ(a, b) = {x ∈X ∣ νγ(x,a) ⊆ b}
= {x ∈X ∣ γ(x)(a) ⊆ b}
= {x ∈X ∣ γ(x) ∈ }(a, b)}
= γ−1(x)( }(a, b)).
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This is clopen by continuity of γ. So (X,νγ ,ClpX) is a general conditional frame.
The frame (X,νγ ,ClpX) is closed because νγ(x,a) = γ(x)(a) ∈KX for all x ∈X,a ∈

ClopX. It is compact and differentiated because X is compact and Hausdorff. Thus
(X,νγ ,ClpX) is descriptive.

It is obvious that the previous two lemmas establish a 1-1 correspondence between
objects of DCF and objects of Coalg(Cst). From now on we will use the terms descriptive
conditional frame and Cst-coalgebra interchangeably.

5.9 Proposition. Let (X,γ) and (X′,γ′) be two Cst-coalgebras and let (X,ν,A) and
(X ′,ν′,A′) be their corresponding descriptive conditional frames. Let f ∶ X → X ′ be a
map between sets. Then f is a general conditional frame morphism if and only if it is a
Cst-coalgebra morphism.

Proof. For all x ∈X,a ∈ A′ we have

(Cstf)(γ(x))(a) = f[γ(x)(f−1(a))] = f[ν(x, f−1(a))]. (5.3)

Suppose f is a general conditional frame morphism, then f is continuous because
f−1(a) ∈ A for all a ∈ A′ and it is a Cst-coalgebra morphism because for all x ∈ X
and a ∈ A′ we have

Cstf ○ γ(x)(a) = f[ν(x, f−1(a))] = ν′(f(x),a) = γ′(f(x))(a).

The first equality holds by (5.3), the second one because f is a general conditional frame
morphism, the third one by the correspondence between objects of DCF and Coalg(Cst)
given in lemma 5.7 and 5.8.

Conversely, suppose f is a Cst-coalgebra morphism. Then f−1(a) ∈ A for all a ∈ A′

by continuity of f . Furthermore f is a general conditional frame morphism because for
all x ∈X and a ∈ A′ we have

f[ν(x, f−1(a))] = Cstf ○ γ(x)(a) = γ′ ○ f(x)(a) = ν′(f(x),a).

The first equality holds by (5.3), the second because f is a Cst-coalgebra morphism and
the third one because of the correspondence between objects given in lemma 5.7 and 5.8.
This proves the proposition.

5.10 Theorem. We have an isomorphism of categories

DCF ≅ Coalg(Cst).

Proof. Follows from lemma 5.7 and 5.8 and proposition 5.9.

It follows directly from the definitions that descriptive conditional models are pre-
cisely Cst-models. It is an easy exercise to show that general conditional frame morphisms
are Cst-model morphisms. This yields the following result:

5.11 Theorem. There is an isomorphism of categories

DCM ≅Mod(Cst).

From now on we will identify descriptive conditional models and Cst-models, and use
the terminology interchangeably. We finish this subsection with a definition and remark
about the conditional language on descriptive conditional models.
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5.12 Definition. Define the clopen predicate liftings λ⇒,λ⇓ ∶ Clp2 → Clp ○Cst by

λ⇒X (a, b) = {h ∈ CstX ∣ h(a) ⊆ b} and λ
⇓

X
(a, b) = {h ∈ CstX ∣ h(a) ∩ b ≠ ∅}.

Then L(λ⇒,λ⇓) is given by

ϕ ∶∶= � ∣ p ∣ ϕ ∧ ψ ∣ ϕ⇒ ψ ∣ ϕ ⇓ ψ,

where p ∈ Φ. ◁

5.13 Remark. Let X = (X,γ,V ) be a Cst-model, then

X,x ⊩ ϕ⇒ ψ iff γ(x) ∈ λ⇒(JϕKX, JψKX)

and
X,x ⊩ ϕ ⇓ ψ iff γ(x) ∈ λ⇓(JϕKX, JψKX).

Indeed, X,x ⊩ ϕ⇒ ψ iff X,x ⊩ ¬(ϕ ⇓ ¬ψ).
Moreover, the topology on CstX is generated by λ⇒(a, b),λ⇓(a, b) where a, b ∈ ClpX,

so {λ⇒,λ⇓} is a characteristic set of clopen predicate liftings for Cst. This allows us to
use various results from chapter 2. In particular, it follows from proposition 2.29 that
modal equivalence coincides with behavioural equivalence.

5.1.2 Duality

The goal of this section is to give a functor Ast on BA, the category of Boolean algebras,
such that the following diagram commutes,

BA Stone

BA Stone

Ast

uf

Cst

clp

uf

clp

We present a functor on BA and then show that it is the dual of Cst.

5.14 Definition. Let B be a Boolean algebra. Let AstB be the Boolean algebra gener-
ated by the elements ◻(a, b), ◇(a, b) where a, b ∈ B subject to the relations

(A1) ◻(a,a) = ⊺AB

(A3) ◻(a, b) ∧ ◻(a, c) = ◻(a, b ∧ c)

(A5) ◻(a, b ∨ c) ≤ ◻(a, b) ∨◇(a, c)

(A7) ◻(a, b) ∧ ◻(a, c) = ◻(a, b) ∧ ◻(b, c)
if b ≤ a

(A2) ◇(a,�B) = �AB

(A4) ◇(a, b) ∨◇(a, c) =◇(a, b ∨ c)

(A6) ◻(a, b) ∧◇(a, c) ≤◇(a, b ∧ c)

(A8) ◻(a, b) ∧◇(a, c) = ◻(a, b) ∧◇(b, c)
if b ≤ a.

If f ∶ A → B is a Boolean algebra morphism, define Astf ∶ AstA → AstB on generators
by Astf(◻(a, b)) = ◻(f(a), f(b)) and Astf(◇(a, b)) = ◇(f(a), f(b)). (One can easily
see that the images of the generators of A under Astf satisfy relations (A1) through
(A8), so by remark 3.3 Astf indeed defines a frame homomorphism.) Then Ast defines
an endofunctor on BA. ◁
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5.15 Remark. Relations (A5) and (A6) together imply ◻(a, b) = ¬◇ (a,¬b).

Although it would have been possible to define AstB using only the boxes as gener-
ators, we have chosen for this presentation, as it provides a smoother transition to the
geometric case in section 5.2. Furthermore, we identify ultrafilters of a Boolean algebra
B with homomorphisms from B to 2 = {⊺,�}.

5.16 Lemma. There is a one-one correspondence between ultrafilters on a Boolean
algebra B and (Boolean algebra) homomorphisms p ∶ B → 2.

The proof of the next theorem is very similar to the proof of theorem 5.38, so we
only give a proof sketch here. We decided to spell out the proof of theorem 5.38 because
it is slightly more involved than the proof of the proposition below.

5.17 Proposition. Let X be a Stone space. Then uf(Ast(clpX)) ≅ CstX.

Proof. We view ultrafilters of Ast(clpX) as Boolean algebra homomorphisms p ∶ Ast(clpX)→
2. Define a map

ϕ ∶ CstX→ uf(Ast(clpX)) ∶ h↦ ph,

where ph is defined on generators by

ph ∶ ASt(clpX)→ 2 ∶ { ◻(a, b)↦ ⊺ iff h(a) ⊆ b

◇(a, b)↦ ⊺ iff h(a) ∩ b ≠ ∅ .

Conversely, define
ψ ∶ uf(Ast(clpX))→ CstX

as follows: For an ultrafilter p ∶ Ast(clpX)→ 2 let hp ∶ clpX→KX be the map given by

hp(a) = X ∖⋃{b ∈ clpX ∣ p(◇(a, b)) = �}.

In order to show that these maps give rise to an isomorphism, we need to show that
both ϕ and ψ are well defined, that they are mutually inverse and that ϕ is continuous.
This is completely similar to the four claims in theorem 5.38.

The map ϕ from the previous theorem yields a map ηX ∶ Ast(clpX)→ clp(CstX).

5.18 Definition. For a Stone space X let ηX be the concatenation of clp, uf and clpϕ,
where ϕ is defined as in theorem 5.17, that is,

ηX ∶ Ast(clpX) clp(uf(Ast(clpX))) clp(CstX).clp ○ uf clpϕ

A routine calculation reveals that this map is given by ◻(a, b)↦ }(a, b) and ◇(a, b)↦
}(a, b). ◁

The collection of isomorphisms ηX constitute a natural isomorphism.

5.19 Proposition. The collection η = (ηX)X∈Stone give a natural isomorphism

η ∶ Ast ○ clp→ clp ○Cst.
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Proof. It follows from proposition 5.17 that ηX is an isomorphism for each Stone space
X. So we need to show naturality of η, that is, for all continuous maps f ∶ X → X′ in
Stone, the following diagram commutes

Ast(clpXst) Ast(clpX′)

clp(CstX) clp(CstX
′)

Ast(clp f)

ηX ηX′

clp(Cstf)

Let ◻(a, b) be a generator in Ast(clpX′). Then

clp(Cstf)(ηX′(◻(a, b))) = (Cstf)−1( }(a, b)) Def of clp and η

= {h ∈ CstX ∣ (Cstf)(h) ∈ }(a, b)}
= {h ∈ CstX ∣ (Cstf)(h)(a) ⊆ b} Definition of }
= {h ∈ CstX ∣ f[h(f−1(a))] ⊆ b} Definition of Cf
= {h ∈ CstX ∣ h(f−1(a)) ⊆ f−1(b)}
= }(f−1(a), f−1(b)) Definition of }
= ηX(◻(f−1(a), f−1(b))) Definition of η

= ηX(Ast(clp f)(◻(a, b))) Def of clp and Ast

The ◇ case follows from the fact that ◇(a, b) = ¬ ◻ (a,¬b). Therefore η is a natural
isomorphism.

5.20 Corollary. There is a dual equivalence

Alg(Ast) ≡op Coalg(Cst).

Proof. Follows from proposition 5.19 and lemma A.6.

5.1.3 Bisimulations between descriptive conditional models

In [7] the authors introduce a notion of conditional bisimilarity between conditional mod-
els. We modify their notion slightly to work well with Cst-models (descriptive conditional
models).

5.21 Definition. Let (X,γ) and (X′,γ′) be two descriptive conditional frames (viewed
as Cst-coalgebras). A closed subset B ⊆ X ×X′ is a descriptive conditional bisimu-
lation if, for all B-coherent sets of clopens (a,a′) and (x,x′) ∈ B we have

• γ(x)(a) ⊆ B−1[γ′(x′)(a′)] and γ′(x′)(a′) ⊆ B[γ(x)(a)].

A conditional bisimulation between descriptive conditional models X = (X,γ,V ) and
X′ = (X′,γ′,V ′) is a conditional bisimulation between the underlying frames with the
extra condition that

• x ∈ V (p) iff x′ ∈ V ′(p) for all p ∈ Φ.

Two states in two descriptive conditional frames or models are called descriptive con-
ditional bisimilar if there is a conditional bisimulation linking them. ◁
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5.22 Remark. We can rephrase the first bullet in definition 5.21 as follows: for all
B-coherent pairs of clopens (a,a′) and (x,x′) ∈ B we have

• for all y ∈ γ(x)(a) there exists y′ ∈ γ′(x′)(a′) such that (y, y′) ∈ B, and vice versa.

This wording resembles more the formulation of definition 5 in [7].

In section 2.3 we defined Λ-bisimulations for Stone coalgebras. A natural question is
how these relate to descriptive conditional bisimulations. It turns out that, in terms of
bisimilarity, they coincide. The remainder of this subsection is devoted to proving the
following theorem.

5.23 Theorem. Let (X,γ,V ) and (X′,γ′,V ′) be two descriptive conditional models,
x ∈X and x′ ∈X ′. Then the following are equivalent:

(i) x and x′ are descriptively conditionally bisimilar;

(ii) x and x′ are {λ⇒,λ⇓}-bisimilar;

(iii) x and x′ are modally equivalent;

(iv) x and x′ are behaviourally equivalent.

As a corollary of this theorem (combined with proposition 2.33) we find the following
relation of descriptive conditional bisimilarity to Aczel-Mendler bisimilarity.

5.24 Corollary. If two states x and x′ in two descriptive conditional frames are Aczel-
Mendler bisimilar, then they are descriptive conditional bisimilar.

We isolate some of the implications of theorem 5.23 as separate propositions.

5.25 Proposition. Let X = (X,γ,V ) and X′ = (X,γ′,V ′) be two descriptive conditional
models and B ⊆ X ×X a descriptive conditional bisimulation. Then B is a {λ⇒,λ⇓}-
bisimulation.

Proof. Let (x,x′) ∈ B. By definition x ∈ V (p) iff x′ ∈ V ′(p). Suppose (a,a′) and (b, b′)
are B-coherent. If γ(x) ∈ λ⇒X (a, b) then γ(x)(a) ⊆ b and hence

γ′(x′)(a′) ⊆ B[γ(x)(a)] ⊆ B[b] ⊆ b′, (5.4)

so γ′(x′) ∈ λ⇒
X′(a′, b′). The first inclusion in (5.4) follows from the fact that B is a

descriptive conditional bisimulation, the last one from the coherence of (b, b′). The
converse direction is proven similarly. For λ⇓, recall that lemma 2.18 states that (X ∖
b,X ′ ∖ b′) is B-coherent whenever (b, b′) is, so

γ(x) ∈ λ⇓
X
(a, b) iff γ(x) ∉ λ⇒X (a,X ∖ b)

iff γ′(x′) ∉ λ⇒X′(a,X ∖ b) iff γ′(x′) ∈ λ⇓
X′(a′, b′).

This proves the proposition.

5.26 Proposition. Let X = (X,γ,V ) and X′ = (X′,γ′,V ′) be two descriptive conditional
models. Let x ∈ X and x′ ∈ X ′ be modally equivalent. Then they are descriptively
conditionally bisimilar.
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b

r

X

a′

b′

r′

X′

Figure 5.3: The image of UX ∖ a under B is b′.

Proof. Let B ⊆ X ×X′ be the relation of modal equivalence. We will show that B is a
descriptive conditional bisimulation. Let w ∈ X and w′ ∈ X ′ be modally equivalent and
let (a,a′) ∈ Clp(X) × Clp(X′) be B-coherent. Assume towards a contradiction that B
does not satisfy the bisimulation property for a and a′, then we claim that this implies
that w and w′ are not modally equivalent. We will show this in a couple of steps:

Step 1. Show that B is closed in X ×X′.

Step 2. Build a formula α that will play the role of a and a′ in the antecedent. That is
a ⊆ JαKX ⊆ a ∪ r with r a set of “non-relevant” states, and similarly a′ ⊆ JαKX

′ ⊆
a′ ∪ r′.

Step 3. Show that γ(w)(JαKX) = γ(w)(a) and γ′(w′)(JαKX
′) = γ(w′)(a′).

Step 4. Find a contradiction with the assumption that B does not satisfy the bisimula-
tion property for a and a′.

Step 1. Suppose (x,x′) ∉ B, then there exists ϕ such that X,x ⊩ ϕ and X′,x′ ⊩ ¬ϕ, so
(x,x′) ∈ JϕKM × J¬ϕKM

′

which is open in X ×X′ and clearly disjoint from B. Therefore
B is closed in X ×X′.

Step 2. Let b = B−1(X′ ∖ a′) and r = X ∖ (a ∪ b). Observe that b is disjoint from a,
for otherwise B[a] /⊆ a′. Moreover, elements in b are not modally equivalent to elements
in a, because this would imply that B[a] /⊆ a′. Observe also that elements in r are not
related to anything in X′, that is, they are not modally equivalent to any element in X′.
With this notation, UX is the disjoint union of a, b and r,

UX = a ∪ b ∪ r.

In a similar way we can write UX′ = a′ ∪ b′ ∪ r′. See figure 5.3.
The set b is closed in X. To see this, note that

b = B−1[X′ ∖ a′] = p[(X′ × a′) ∩B],

where p ∶ X ×X′ → X is projection to the first coordinate. Observe that (X × a′) ∩B is
closed in X×X′. As X′ is compact, p is a closed map and b is closed in X. For a similar
reason b′ is closed in X′.

Since elements of a are not modally equivalent to elements of b ∪ (X′ ∖ a′), for each
x ∈ a and y ∈ b ∪ b′ ∪ r′ there exists ϕx,y such that X,x ⊩ ϕx,y and X, y ⊩ ¬ϕx,y when
y ∈ b and X′, y ⊩ ¬ϕx,y when y ∈ b′ ∪ r′. Fix x ∈ a. Then b ⊆ ⋃y∈bJ¬ϕx,yKX is an open
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covering of the closed set b. By compactness there exists a finite subset Ix ⊆ b such that
b ⊆ ⋃y∈IxJ¬ϕx,yKX. Similarly we have b′ ∪ r′ ⊆ ⋃y∈b′∪r′Jϕx,yKX

′

and by compactness we

find a finite I ′x ⊆ b′ ∪ r′ such that b′ ∪ r′ ⊆ ⋃y∈I′xJϕx,yKX
′

is a finite subcover. Set

χx ∶= ⋀
y∈Ix∪I′x

ϕx,y.

Then X,x ⊩ χx and for all y ∈ b ∪ b′ ∪ r′ we have y /⊩ χx. Next, we find an open covering

a ⊆ ⋃
x∈a

JχxKX

and since a is closed, hence compact, there exists a finite set J ⊆ a such that a ⊆
⋃x∈JJχxKX. Set

χ ∶= ⋁
x∈J

χx.

Then χ has the property that X,x ⊩ χ for all x ∈ a and X, y /⊩ χ for y ∈ b and X′, y′ /⊩ χ
for y′ ∈ b′ ∪ r′. In a symmetric way we can define a formula χ′ which is true for all x ∈ a′
and false for all y ∈ b′ ∪ b ∪ r.

Let α ∶= χ ∨ χ′. Then

a ⊆ JαKX ⊆ a ∪ r and a′ ⊆ JαKX
′ ⊆ a′ ∪ r′. (5.5)

Step 3. Our next goal is to show γ(w)(JαKX) = γ(w)(a). Let z ∈ γ(w)(JαKX). By
condition (C1) from definition 5.3 we know z ∈ JαKX and by equation (5.5) this means
either z ∈ a or z ∈ r.

If z ∈ r then z is not modally equivalent to any x ∈ X′. Therefore we can make a
formula β that is true everywhere in X′ but that is not true on z: For each x ∈ X′, there
exists ϕx such that X, z ⊩ ϕ and X′,x /⊩ ϕx, so the clopen sets J¬ϕxKX

′

(where x ranges
over X′) form an open cover of X′. By compactness there exists a finite subcover, say,
X′ = J¬ϕ1KX

′ ∪⋯ ∪ J¬ϕnKX
′

. Set

β ∶= ¬ϕ1 ∨⋯ ∨ ¬ϕn,

then X, z /⊩ β while X′,x ⊩ β for all x ∈ X′. In particular this means γ(w)(JαKX) /⊆
JβKX and γ′(w′)(JαKX

′) ⊆ JβKX
′

. Therefore X,w /⊩ α ⇒ β while X′,w′ ⊩ α ⇒ β. A
contradiction with the assumption that w and w′ are modally equivalent. We conclude
that z ∈ a.

As a ⊆ JαKX and γ(w)(JαKX) ⊆ a, it follows form condition (C2) from definition 5.3
that

γ(w)(JαKX) = γ(w)(a).

In a similar way one may show that γ′(w′)(JαKX
′) = γ′(w′)(a′).

Step 4. Now suppose for a contradiction that B does not satisfy the bisimulation
property for the sets a and a′. Then without loss of generality, there is x ∈ γ(w)(a)
such that for all x′ ∈ γ′(w′)(a′) we have (x,x′) ∉ B. For each x′ ∈ γ′(w′)(a′) let ϕx′ be
such that X,x ⊩ ¬ϕx′ and X′,x′ ⊩ ϕx′ . Then the union

⋃
x′∈γ′(w′)(a′)

Jϕx′KX
′
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is an open cover of γ′(w′)(a′). Since γ′(w′)(a′) is closed, hence compact, there is a
finite set I ⊆ γ′(w′)(a′) such that ⋃x′∈IJϕx′KX

′

covers γ′(w′)(a′). Therefore the formula
ψ = ⋁x′∈I ϕx′ that is false at x and true everywhere in γ′(w′, JαKX

′). But then X,w /⊩
α ⇒ ψ and X′,w′ ⊩ α ⇒ ψ, a contradiction. This shows that B must be a descriptive
conditional bisimulation.

Recall theorem 5.23; the proof is now easy:

5.23 Theorem. Let (X,γ,V ) and (X′,γ′,V ′) be two descriptive conditional models,
x ∈X and x′ ∈X ′. Then the following are equivalent:

(i) x and x′ are descriptively conditionally bisimilar;

(ii) x and x′ are {λ⇒,λ⇓}-bisimilar;

(iii) x and x′ are modally equivalent;

(iv) x and x′ are behaviourally equivalent.

Proof of theorem 5.23. The implication (i) ⇒ (ii) follows from proposition 5.25, (ii) ⇒
(iii) is lemma 2.32, (iii) ⇒ (i) is proposition 5.26 and (iii) ⇔ (iv) is proposition 2.29.

A notion of bisimulation is called structural if it does not rely on the truth set of any
formulas apart from the propositional variables. Structural bisimulations are preferred
over non-structural ones. (For a discussion about this in the scope of conditional logic
see e.g. [15].) In particular Λ-bisimulations (see definition 2.30) are non-structural.
Theorem 5.23 provides a structural charactarization of {λ⇒,λ⇓}-bisimilarity (and modal
equivalence and behavioural equivalence).

5.2 Geometric conditional logic

In this section we develop (the frames for) geometric conditional logic. We first generalise
the conditional frames from example 2.10 to geometric conditional frames. We show how
geometric conditional frames can be viewed as coalgebras for a functor Ckh. Thereafter,
we define two open predicate liftings that correspond to the binary modalities ⇒ and ⇓.
In subsection 5.2.2 we give a functor on Frm whose restriction to KRFrm is dual to Ckh.

5.2.1 Geometric conditional frames

5.27 Definition. A topological conditional frame is a triple (X,ν,A) where X is
a set, A ⊆ PX is a topology on X and ν ∶X ×A→ PX is a map, such that

• A is closed under the maps mν ,nν ∶ A × PX → PX defined by

mν(a, b) ∶= {x ∈X ∣ ν(x,a) ⊆ b}, nν(a, b) ∶= {x ∈X ∣ ν(x,a) ∩ b ≠ ∅},

• ν ∶X ×A→KX satisfies for all x ∈X, a, b ∈ A;

(i) if a ∩ b = ∅, then ν(x,a) ∩ b = ∅,

(ii) if a ⊆ b and ν(x, b) ⊆ a, then ν(x,a) = ν(x, b). ◁
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5.28 Definition. Let X = (X,ν,A) be a topological conditional frame and denote by
X the set X topologised by A. We say that X is differentiated if for all x, y ∈X there
exist disjoint a, b ∈ A such that x ∈ a and y ∈ b, closed if ν(x,a) is closed in X for all
x ∈X and a ∈ A, and compact if X is compact.

A geometric conditional frame is a compact, closed and differentiated topological
conditional frame. A geometric conditional frame morphism from (X,ν,A) to
(X ′,ν′,A′) is a map f ∶X →X ′ such that f−1(a′) ∈ A for all a′ ∈ A′ (i.e. f is continuous)
and f[ν(x, f−1(a))] = ν′(f(x),a) for all x ∈ X,a ∈ A′. Write GCF for the category of
geometric conditional frames and geometric conditional frame morphisms. ◁

Let us take a coalgebraic perspective.

5.29 Definition. For a topological space X, let CtopX be the collection of maps h ∶
ΩX→KX such that for all x ∈ X and a, b ∈ ΩX we have

(C1) if a ∩ b = ∅ then h(a) ∩ b = ∅; and

(C2) if a ⊆ b and h(b) ⊆ a then h(a) = h(b).
Endow CtopX with the topology generated by the subbase

}(a, b) ∶= {h ∈ CtopX ∣ h(a) ⊆ b}, }(a, b) ∶= {h ∈ CtopX ∣ h(a) ∩ b ≠ ∅}

where a and b range over the opens of X. For a continuous map f ∶ X → X′ between
topological spaces, define Ctopf ∶ CtopX→ CtopX

′ by

Ctopf(h)(a) = f[h(f−1(a))].

(The overline denotes closure.) Then Ctop defines an endofunctor on Top. ◁
5.30 Remark. (i) Condition (C1) can be reformulated as h(a) ⊆ a. The intuition
behind this is as follows: The opens of a topological space will serve as the interpretants
of geometric modal formulae and ν(x)(JϕK) indicates the relevant states of JϕK for x.
If the truth set JϕK of some formula ϕ is disjoint from the truth set JψK of ψ, then we
require that ϕ⇒ ψ is false, i.e. h(JϕK)∩JψK = ∅. However, we want to allow the situation
where every state in JϕK is relevant for x, so a ⊆ h(a). The set h(a) must be closed, and
the smallest closed set containing a is the closure a. Therefore, we tolerate h(a) = a.

(ii) If f ∶ X → X′ is a morphism in KHaus then f[h(f−1(a))] ⊆ X′ is closed, so
f[h(f−1(a))] = f[h(f−1(a))]. Since a is open in X′, f−1(a) is open in X. By construc-
tion h(f−1(a)) is closed in X, and since X is compact and X′ is Hausdorff, f is a closed
map so f[h(f−1(a))] is closed in X′.

5.31 Lemma. Let f ∶ X → X′ be a continuous map between topological spaces. Then
Ctopf ∶ CtopX→ CtopX

′ is a well-defined continuous map.

Proof. We need to show that for each h ∈ CtopX, the conditions (C1) and (C2) from
definition 5.29 hold, and that Ctopf is continuous. Checking (C1) and (C2) is similar to
example 2.21.

For continuity, it suffices to check that for all a, b ∈ ΩX′, the sets (Ctopf)−1( }(a, b))
and (Ctopf)−1(}(a, b)) are open in CtopX. It can be shown by a straightforward com-
putation that

(Ctopf)−1( }(a, b)) = }(f−1(a), f−1(b)) and (Ctopf)−1(}(a, b)) =}(f−1(a), f−1(b)).

Since f is continuous, f−1(a) and f−1(b) are open in X, hence }(f−1(a), f−1(b)) and
}(f−1(a), f−1(b)) are open in CtopX. This proves that Ctopf is continuous.
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5.32 Lemma. If X is a compact Hausdorff space, then so is CtopX.

Proof. Ctop is Hausdorff. Suppose h ≠ h′ in CtopX, then h(a) ≠ h′(a) for some
open set a of X. Without loss of generality assume there exists x ∈ h′(a) such that
x ∉ h(a). Since h(a) is closed and X is compact Hausdorff, hence regular, there exist
disjoint open neighbourhoods u, v of h(a) and x respectively. Now we have h ∈ }(a,u),
h′ ∉ }(a,u) and h ∉ }(a, v), h′ ∈ }(a, v). For any j ∈ CtopX, whenever j ∈ }(a,u) we
have v ∩ j(a) = ∅ so j ∉ }(a, v). Therefore }(a,u) and }(a, v) are disjoint and CtopX

is Hausdorff.

Ctop is compact. The proof of this is similar to the proof of lemma 5.6.

5.33 Definition. Let Ckh denote the restriction of the functor Ctop to KHaus. Lemma
5.32 entails this is an endofunctor on KHaus. ◁

5.34 Proposition. GCF ≅ Coalg(Ckh).

Proof. There is an obvious bijection between objects of GCF and objects of Coalg(Ckh).
Let (X,ν,A) and (X ′,ν′,A′) be two geometric conditional frames and let (X,γ) and
(X′,γ′) be the corresponding Ckh-coalgebras. Let f ∶ X → X ′ be a function. We claim
that f is a geometric conditional frame morphism if and only if it is a Ckh-coalgebra
morphism.

Suppose f is a geometric conditional frame morphism. Then f is continuous as
f−1(a′) ∈ A for all a′ ∈ A′ and A′ is precisely the set of opens in X. Let x ∈ X and
a ∈ ΩX, then

(Cf)(γ(x))(a) = f[γ(x)(f−1(a))] = f[ν(x, f−1(a))] = ν′(f(x),a) = γ′(f(x))(a),

so f is a Ckh-coalgebra morphism. The converse direction is similar.

5.35 Remark. The functor Ckh coincides with the restriction to KHaus of the sober
Kupke-Kurz-Pattinson lift (from section 4.1) C̈{λ⇒,λ⇓} of C with respect to the predicate

liftings λ⇒,λ⇓ (from example 2.22). This can be proved in a way similar to example 4.9
and using the duality from theorem 5.38 below.

We close this subsection with a brief look at the open predicate liftings that constitute
geometric conditional logic.

5.36 Definition. Define the open predicate liftings λ⇒,λ⇓ ∶ Ω2 → Ω ○Ctop by

λ⇒X (a, b) = {h ∈ CtopX ∣ h(a) ⊆ b} and λ
⇓

X
(a, b) = {h ∈ CtopX ∣ h(a) ∩ b ≠ ∅}.

Recall that we write Φ for a set of proposition letters. Then GML({λ⇒,λ⇓}) is given by

ϕ ∶∶= � ∣ p ∣ ϕ1 ∧ ϕ2 ∣⋁
i∈I

ϕi ∣ ϕ1 ⇒ ϕ2 ∣ ϕ1 ⇓ ϕ2,

where p ∈ Φ. ◁

Let X = (X,γ,V ) be a Ctop-model, then

X,x ⊩ ϕ⇒ ψ iff γ(x)(JϕKX) ⊆ JψKX

and
X,x ⊩ ϕ ⇓ ψ iff γ(x)(JϕKX) ∩ JψKX ≠ ∅.

Moreover, the topology on CtopX is generated by λ⇒(a, b),λ⇓(a, b) where a, b ∈ ΩX,
so {λ⇒,λ⇓} is a characteristic set of open predicate liftings for Ctop.
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5.2.2 An Isbell dual for Ckh

We will now work towards a dual functor for Ckh on the frame side, analogous to theorem
3.41. Recall from definition 3.7 that for an element a in a frame F the negation is defined
as ∼a = ⋁{b ∈ F ∣ a ∧ b = �}.

5.37 Definition. Let B be a frame. Define AB to be the frame generated by the set
{◻(a, b),◇(a, b) ∣ a, b ∈ B} subject to the following relations:

(A1) ◻(a, b) = ⊺AB if b ∨ ∼a = ⊺

(A3) ◻(a, b) ∧ ◻(a, c) = ◻(a, b ∧ c)

(A5) ◻(a, b ∨ c) ≤ ◻(a, b) ∨◇(a, c)

(A7) ◻(a, b) ∧ ◻(a, c) = ◻(a, b) ∧ ◻(b, c)
if b ≤ a

(A9) b∈A ◻(a, b) = ◻(a, A)
if A is directed

(A2) ◇(a, b) = �AB if a ∧ b = �

(A4) ◇(a, b) ∨◇(a, c) =◇(a, b ∨ c)

(A6) ◻(a, b) ∧◇(a, c) ≤◇(a, b ∧ c)

(A8) ◻(a, b) ∧◇(a, c) = ◻(a, b) ∧◇(b, c)
if b ≤ a

(A10) b∈A◇(a, b) =◇(a, A)
if A is directed

If f ∶ B → B′ is a frame homomorphism, define Af ∶ AB → AB′ on generators by
Af(◻(a, b)) = ◻(f(a), f(b)) and Af(◇(a, b)) = ◇(f(a), f(b)). (By remark 3.3 Astf is
well defined.) ◁

We will now show that there is a duality between Ckh and a restriction of A. The
proof of the next theorem is somewhat similar to the proof of theorem 3.41 and to the
proof of proposition III4.6 in [29]. The main difference with the proof in [29] is the fact
that we use binary modalities instead of unary ones. Therefore our maps (that constitute
the aforementioned duality) are defined differently. The second argument of each of the
modalities is treated similarly to the proof in [29].

5.38 Theorem. If X = (X, τ) is a compact Hausdorff space then

pt(A(opnX)) ≅ CkhX.

Proof. Define a map
ϕ ∶ CkhX→ pt(A(opnX)) ∶ h↦ ph,

where ph is defined on generators by

ph ∶ A(opnX)→ 2 ∶ { ◻(a, b)↦ ⊺ iff h(a) ⊆ b

◇(a, b)↦ ⊺ iff h(a) ∩ b ≠ ∅ .

Conversely, for a point p ∈ pt(A(opnX)) define hp ∶ ΩX→KX by

hp(a) = X ∖⋃{b ∈ ΩX ∣ p(◇(a, b)) = �}.

This gives rise to a map ψ ∶ pt(A(opnX))→ CkhX.
Note the absence of the box in the definition of hp. This is less surprising that it may

seem at first sight: Diamonds and boxes interact via relation (A5) and (A6). It follows
from claim 5.38.C below that it is also possible to define hp(a) using boxes, namely via

hp(a) =⋂{b ∈ ΩX ∣ p(◻(a, b)) = ⊺}.

We will show that both ϕ and ψ are well defined, that they are mutually inverse and
that ϕ is continuous. Throughout, we write X ∶= UX.
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5.38.A Claim. For each h ∈ CkhX, the map ph indeed defines a point.

Proof of claim. Since a point is simply a frame homomorphism Akr(opnX) → 2 and
ph is defined on generators, by remark 3.3 it suffices to show that the p(◻(a, b)) and
p(◇(a, b)), where a, b range over ΩX, satisfy relations (A1) through (A10).

(A1) Observe that ∼a = X ∖ a. Let b be such that b ∪ (X ∖ a) = X. Then a ⊆ b. Since
for all h in CkhX we have h(a) ⊆ a, we know ph(◻(a, b)) = ⊺.

(A2) Let a, b ∈ ΩX and suppose a ∩b = ∅. As a and b are open, we have a ∩b = ∅. Since
h(a) ⊆ a it follows that h(a) ∩ b = ∅, so ph(◇(a, b)) = �.

(A3) For all a, b, c ∈ ΩX we have ph(◻(a, b ∩ c)) = ⊺ iff h(a) ⊆ b ∩ c iff [h(a) ⊆ b and
h(a) ⊆ c] iff [ph(◻(a, b)) = ⊺ and ph(◻(a, c)) = ⊺] iff ph(◻(a, b) ∧ ◻(a, c)) = ⊺.

(A4) For all a, b, c ∈ ΩX we have ph(◇(a, b) ∨ ◇(a, c)) = ⊺ iff [ph(◇(a, b)) = ⊺ or
ph(◇(a, c)) = ⊺] iff [h(a)∩b ≠ ∅ or h(a)∩c ≠ ∅] iff h(a)∩(b∪c) ≠ ∅ iff ph(◇(a, b∪
c)) = ⊺.

(A5) Suppose ph(◻(a, b ∪ c)) = ⊺. If ph(◻(a, b)) = ⊺ we are done, so suppose otherwise.
Then ph(◻(a, b)) = �, so h(a) ⊆ b ∪ c and h(a) /⊆ b. Then h(a) ∩ c ≠ ∅ and hence
ph(◇(a, c)) = ⊺.

(A6) Suppose ph(◻(a, b)) = ⊺ and ph(◇(a, c)) = ⊺. Then h(a) ∩ c ≠ ∅, so there is
some x ∈ h(a) such that x ∈ c. Since h(a) ⊆ b this x must be in b, and hence
h(a) ∩ (b ∩ c) ≠ ∅, so that hp(◇(a, b ∩ c)) = ⊺.

(A7) Suppose b ⊆ a. If h(a) ⊆ b then by (C2) from definition 5.29 h(a) = h(b), hence
h ∈ ◻(a, c) iff h ∈ ◻(b, c). So if ph(◻(a, b)) = ⊺ we have ph(◻(a, c)) = ph(◻(b, c)),
which proves that (A7) holds.

(A8) Suppose b ⊆ a. If h(a) ⊆ b then by (C2) from definition 5.29 h(a) = h(b), hence
h ∈ ◇(a, c) iff h ∈ ◇(b, c). So if ph(◻(a, b)) = ⊺ we have ph(◇(a, c)) = ph(◇(b, c))
for all c, which proves that (A8) holds.

(A9) We need to show that b∈A ph(◻(a, b)) = ph(◻(a,⋃↑A)). Suppose b∈A ph(◻(a, b)) =
⊺, then ph(◻(a, b)) = ⊺ for some b ∈ A. So for this b we have h(a) ⊆ b. Since b ⊆ ⋃↑A
this implies h(a) ⊆ ⋃↑A and hence ph(a,⋃↑A) = ⊺.

Conversely, suppose ph(◻(a,⋃↑A)) = ⊺, then h(a) ⊆ ⋃↑A. The sets in A form an
open cover of h(a) and since h(a) is closed it has a finite subcover. Since A is a
directed set, there is some b ∈ A containing the union of this finite subcover, and
therefore h(a) ⊆ b. But then ph(◻(a, b)) = ⊺ and hence b∈A ph(◻(a, b)) = ⊺.

(A10) We need to show that b∈A ph(◇(a, b)) = ph(◇(a,⋃↑A)). Suppose b∈A ph(◇(a, b)) =
⊺, then there is some b ∈ A such that ph(◇(a, b)) = ⊺, so h(a)∩b ≠ ∅. Since b ⊆ ⋃↑A
this implies h(a) ∩ (⋃↑A) ≠ ∅, hence ph(◇(a,⋃↑A)) = ⊺.

Suppose b∈A ph(◇(a, b)) = �. Then h(a) ∩ b = ∅ for all b ∈ A. Therefore every
b ∈ A is contained in the open set X ∖ h(a), hence ⋃↑A ⊆ X ∖ h(a). This implies
h(a) ∩ (⋃↑A) = ∅, so ph(◇(a,⋃↑A)) = �.

So for each h ∈ CkhX, the map ph is indeed a point. ◇

5.38.B Claim. For each point p ∈ pt(A(opnX)) the map hp is an element of CkhX.
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Proof of claim. It is clear that hp(a) ∈ KX, because it is the complement of a union of
open sets. We need to show that hp satisfies conditions (C1) and (C2) from definition
5.29.

First (C1). Let a ∈ ΩX. Using (A2) we find p(◇(a,∼a)) = p(�) = � so ⋃{c ∣
p(◇(a, c)) = �} ⊇ ∼a and hence

hp(a) =X ∖⋃{c ∣ p(◇(a, c)) = �} ⊆X ∖ ∼a = a.

Now (C2). Suppose b ⊆ a and hp(a) ⊆ b. We need to show that hp(a) = hp(b).
Abbreviate Ca = {c ∈ ΩX ∣ p(◇(a, c)) = �}. Then ⋃Ca ∈ ΩX. Moreover, Ca is directed,
because p(◇(a, c)) = p(◇(a, c′)) = � implies p(◇(a, c ∪ c′)) = p(◇(a, c)) ∨ p(◇(a, c′)) =
� ∨ � = �. Now (A10) implies p(a,⋃↑Ca) = �.

Since hp(b) ⊆ a we have X = a ∪ (X ∖ hp(b)) = a ∪ ⋃C. Because p(a,X) = ⊺ and
p(a,⋃Ca) = � it follows from (A5) that p(◻(a, b)) = ⊺. Therefore, by (A8), p(◇(a, d)) =
p(◇(b, d)) for all d so hp(a) = hp(b). Clearly this implies hp(a) = hp(b), as desired. ◇

5.38.C Claim. For every point p we have

(i) hp(a) ∩ b ≠ ∅ iff p(◇(a, b)) = ⊺; and

(ii) hp(a) ⊆ b iff p(◻(a, b)) = ⊺.

Proof of claim. Abbreviate Ca = {c ∈ ΩX ∣ p(◇(a, c)) = �}. We have seen in the proof of
claim 5.38.B that p(◇(a,⋃Ca)) = �. It follows from (A4) that for any d ⊆ ⋃Ca we have
p(◇(a, d)) = �. By definition p(◇(a, d)) = � implies d ⊆ Ca . Therefore

hp(a) ∩ d ≠ ∅ iff d /⊆⋃Ca iff p(◇(a, d)) ≠ � iff p(◇(a, b)) = ⊺.

This proves (i).
Proving (ii) requires some more work. Suppose hp(a) ⊆ b. Then b ∪ ⋃Ca = X so

p(◻(a, b ∪⋃Ca)) = ⊺. By (A5) we have p(◻(a, b ∪⋃Ca)) ≤ p(◻(a, b)) ∨ p(◇(a,⋃Ca))
and since p(◇(a,⋃Ca)) = �, we must have p(◻(a, b)) = ⊺.

For the converse, suppose hp(a) /⊆ b. Then X ∖⋃Ca /⊆ b, so

b ∪⋃Ca ≠X. (5.6)

If b′ ⪕ b then by lemma 3.8 ∼b′ ∨ b = ⊺, so by (5.6) ∼b′ /⊆ ⋃C and hp(a) ∩ ∼b ≠ ∅; hence
by part (i) of this proof p(◇(a,∼b′)) = ⊺. Relation (A8) gives

p(◻(a, b′)) ∧ p(◇(a,∼b′)) ≤ p(◇(a, b′ ∧ ∼b′)) = p(◇(a,�)) = �

and since p(◇(a,∼b′)) = ⊺ this implies p(◻(a, b′)) = �. It then follows from (A10) and
regularity of X that

p(◻(a, b)) = p(◻(a,⋃↑b′⪕bb′)) = p(⋃↑b′⪕b ◻ (a, b′)) = ⋃↑b′⪕bp(◻(a, b′)) = �.

We may conclude that p(◻(a, b)) = ⊺ iff hp(a) ⊆ b. ◇

5.38.D Claim. The maps ϕ and ψ define a bijection between CkhX and pt(A(opnX)).

Proof of claim. We will show that for all p ∈ pt(A(opnX)) we have p = php and for all
h ∈ CkhX we have h = hph . We start with showing p = php .
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It suffices to show that p and php coincide on the generators of A(opnX). It follows
from the definition of ph (for a point p) and claim 5.38.C that

p(◻(a, b)) = ⊺ iff hp(a) ⊆ b iff php(◻(a, b)) = ⊺

and
p(◇(a, b)) = ⊺ iff hp(a) ∩ b ≠ ∅ iff php(◇(a, b)) = ⊺.

Therefore p = php .
Now let us prove h = hph . It suffices to show that for each a, b ∈ ΩX we have h(a) ⊆ b

iff hph(a) ⊆ b. By definition of ph we have h(a) ⊆ b iff ph(◻(a, b)) = ⊺. It follows from
claim 5.38.C that ph(◻(a, b)) = ⊺ iff hph(a) ⊆ b. This proves the claim. ◇

5.38.E Claim. The map ϕ is continuous.

Proof. The opens of pt(A(opnX)) are generated by ◻̃(a, b) = {p ∣ p(◻(a, b)) = ⊺} and
◇̃(a, b) = {p ∣ p(◇(a, b)) = ⊺}. We have

ϕ−1(◻̃(a, b)) = ϕ−1({p ∣ p(◻(a, b)) = ⊺}) = {h ∈ CkhX ∣ h(a) ⊆ b} = }(a, b)

and similarly ϕ−1(◇̃(a, b)) =}(a, b). This proves continuity of ϕ. ◇

This completes the proof of the theorem.

An immediate corollary of this theorem is the fact that the functor A on Frm preserves
compact regularity. Let Akr be the restriction of A to KRFrm. Theorem 5.38 entails that
the frames Akr(opnX) and opn(CkhX) are isomorphic for every X ∈ KHaus.

5.39 Definition. For a compact Hausdorff space X, let ηX be the map

Akr(opnX) opn(pt(Akr(opnX))) opn(CkhX).opn ○ pt opnϕ

It is routine to verify that, on generators, this is given by ◻(a, b)↦ }(a, b) and ◇(a, b)↦
}(a, b). ◁

It turns out that the the collection (ηX)X∈KHaus constitutes a natural isomorphism
between Akr ○ opn and opn ○Ckh.

5.40 Proposition. Let η = (ηX)X∈KHaus. Then η ∶ Akr ○ opn → opn ○Ckh is a natural
isomorphism.

Proof. It follows from theorem 5.38 that ηX is an isomorphism for each compact Haus-
dorff sapce X, so we only need to show naturality. Let f ∶ X → X′ be a continuous
map between compact Hausdorff spaces. We need to show that the following diagram
commutes

Akr(opnX) Akr(opnX′)

opn(CkhX) opn(CkhX
′)

Akr(opn f)

ηX ηX′

opn(Ckhf)
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Let ◻(a, b) be a generator in Akr(ClopX′). Then

opn(Ckhf)(ηX′(◻(a, b)))
= (Ckhf)−1( }(a, b)) Def of opn and ηX′

= {h ∈ CkhX ∣ (Ckhf)(h) ∈ }(a, b)}
= {h ∈ CkhX ∣ (Ckhf)(h)(a) ⊆ b} Definition of }
= {h ∈ CkhX ∣ f[h(f−1(a))] ⊆ b} Definition of Ckhf

= {h ∈ CkhX ∣ h(f−1(a)) ⊆ f−1(b)}
= }(f−1(a), f−1(b)) Definition of }
= ηX(◻(f−1(a), f−1(b))) Definition of ηX

= ηX(Akr(opn f)(◻(a, b))) Def of Akr and opn

With a similar argument it can be shown that

(opn(Ckhf)(ηX′(◇(a, b))) = ηX(Akr(opn f)(◇(a, b))).

This proves that η is a natural transformation.

Applying lemma A.6 to proposition 5.40 yields the following corollary.

5.41 Corollary. There is a dual equivalence

Alg(Akr) ≡op Coalg(Ckh).

This section provided an initial attempt at the development of geometric conditional
logic. We finish this section on the claim that there are still many interesting questions
concerning geometric conditional logic, some of which can be found in chapter 6.
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6

Conclusion

We have started building a framework for coalgebraic geometric logic and investigated
some examples of concrete funtors. There are still many unanswered and interesting
questions. We outline possible directions for further research.

Bisimulations In [6] the authors define Λ-bisimulations (which are inspired by [17])
between set coalgebas. In this thesis we define Λ-bisimulations between Stone coalgebras
(section 2.3) and between sober coalgebras (section 3.4). This raises the question whether
a more uniform treatment of Λ-bisimulations is possible, which encompasses all these
cases.

Lifting functors In section 4.1 we give a method to lift a set functor T together with
a set of predicate liftings Λ for T to an endofunctor T̈Λ on Sob. We know three instances
where this lifted functor preserves the compact Hausdorff property: when lifting the
powerset functor, the monotone functor and the conditional functor (with respect to
a suitable Λ). An interesting question is whether we can find general conditions (on
T or Λ) which imply preservation properties of T̈, like preserving compactness or the
Hausdorff property. This search could be inspired by the cases where we know that the
compact Hausdorff property is preserved.

Besides, in [57] the authors give a method for lifting a certain class of set functors
to endofunctors on Frm, which leads to geometric logic with an added modality ∇. We
suspect that there is a connection with our way of lifting set functors to sober functors,
in the sense that, for a cleverly chosen set of predicate liftings Λ, the lift of T to a functor
on Frm is dual to T̈Λ.

Examples in theory As mentioned at the end of chapter 3, it is not completely clear
how the concrete examples of functors we have seen fit in the general theory that we
developed. An interesting direction for further research is to investigate how examples
fit within this general theory.

Proof theory Throughout this thesis we have focussed on the semantics of certain
coalgebraic logics. An interesting course of action is to investigate the syntactic side of
the logics involved. One could either try to do this in full generality, or (as a first step)
develop proof theory for examples such as monotone and conditional geometric logic.
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7

Populaire samenvatting

We schetsen wat een set-coalgebra is en hoe zulke coalgebras verschillende structure
beschrijven.

Coalgebras Laat T een formule zijn die van elke verzameling X een (andere) verza-
meling TX maakt (dat noemen we een functor). Een voorbeeld van zo’n formule is de
machtsverzameling functor P, die stuurt een verzameling X naar de machtsverzameling
PX = {V ∣ V ⊆ X}. Een T-coalgebra is dan simpelweg een paar (X,γ) van een verza-
meling X en een afbeelding γ ∶ X → PX. Coalgebras zijn een algemeen raamwerk om
structuren te beschrijven. We geven twee voorbeelden van zulke structuren en hoe ze
als coalgebra gezien kunnen worden.

Transitie systemen Een transitie systeem is een verzameling X met daarop een re-
latie R. Een relatie is een deelverzameling van X ×X. Als x en y twee punten in X zijn
dan zeggen we “x ziet y” als (x, y) ∈ R.

Een voorbeeld van een transitie systeem is

x1

x2

x3

Dit is een weergave van (X,R) met X = {x1,x2,x3} en

R = {(x1,x2), (x1,x3), (x2,x1), (x2,x3)}.

We kunnen dit zien als een P-coalgebra door γR ∶X → PX te definiëren als γ(xi) = {xj ∈
X ∣ (xi,xj) ∈ R}. Dan beschrijft de P-coalgebra (X,γR) precies het transitie system
(X,R); dat wil zeggen, als we alleen (X,γR) zouden weten kunnen we daaruit aflezen
wat (X,R) is en andersom.

In het algemeen corresponderen transitie systemen één-op-één met P-coalgebras.

Gelabelde transitie systemen Stel nu dat we aan elke pijl een label toevoegen. Zij
A een collectie labels waaruit we kunnen kiezen. Een gelabeld transitie systeem een paar
(X,L) met X een verzameling en L ⊆ X ×A ×X een gelabelde relatie. Een voorbeeld
van een gelabeld transitie systeem is

x1

a2

x2a1 a3

x3

a4
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Dit is (X1,L1) met X1 = {x1,x2,x3} en

L1 = {(x1,a2,x2), (x1,a4,x3), (x2,a1,x1), (x2,a3,x3)}.

Om dit als een coalgebra te zien kunnen we niet meer P gebruiken maar moeten we een
andere functor, L, maken.

Voor een verzameling X definiëren we

LX = P(A ×X).

We kunnen het gelabelde transitie systeem (X1,L1) nu beschouwen als L-coalgebra:
Laat γL1(xi) = {(a,xj) ∣ (xi,a,xj) ∈ L}. Dan is

γL1 ∶X → PX ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 ↦ {(a2,x2), (a4,x3)}
x2 ↦ {(a1,x1), (a3,x3)}
x3 ↦ ∅

en dan kunnen we uit het paar (X,γL1) het gelabelde transitie systeem (X,L) achter-
halen. In het algemeen corresponderen gelabelde transitie systemen precies met L-
coalgebras.

Deze scriptie Coalgebras zoals hierboven, maar in een meer algemene vorm, vormen
de basis van deze thesis. We definiëren logica op coalgebras en bestuderen eigenschappen
van verschillende klassen coalgebras.
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A

Appendix

A.1 Notation

Throughout this thesis, Φ denotes a denumerable set of proposition letters. Also we have
number of notational conventions. Sets come in many forms and, when the setting is not
yet set, are written as capital letters X,X ′,Y . Elements of a set are denoted by lower
case letters x,x′, y,u. Subsets of a given set X are written in lower case calligraphy,
a, b. Collections of subsets of a given set are written as W ,W ′,V . Topological spaces
are indicated by bold upper case calligraphic letters, X,X′, Y and their underlying sets
by the upper case normal font of the letter.

Categories are denoted in this font. Usually C stands for an arbitrary category. We
fix some categories:

• Set is the category of sets and functions;

• Top is the category of topological spaces and continuous functions;

• Top0,Sob,KTop,KSob,KHaus and Stone are the full subcategories of Top with as
objects T0-spaces, sober spaces, compact spaces, compact sober spaces, compact
Hausdorff spaces and Stone spaces respectively;

• BA is the category of Boolean algebras and Boolean algebra homomorphisms;

• Frm is category of frames and frame homomorphisms;

• SFrm,KFrm,KSFrm and KRFrm are the full subcategories of Frm with objects spa-
tial frames, compact frames, compact spatial frames and compact regular frames
respectively.

More categories are defined as we go.
Functors are usually denoted by a blackboard font letter, A,B,C. An arbitrary

functor is written as T and its the domain and range should be clear from the context.
The following functors will be used throughout the thesis:

• U ∶ Top→ Set is the forgetful functor sending a topological space to its underlying
set;

• Z ∶ Frm → Set is the forgetful functor sending a frame to its carrier in Set, in
particular this restricts to a functor BA→ Set;

• P ∶ Set→ Set is the covariant powerset functor;
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• Q ∶ Set → BA is the contravariant functor sending a set to its powerset Boolean
algebra and a function on Set to its inverse image.

Some functors do not adhere to the rule of being a blackboard letter:

• uf ∶ BA→ Stone is the contravariant functor which sends a Boolean algebra B to the
Stone space of ultrafilters topologised by {ã ∣ a ∈ B}, where ã = {u ∈ ufB ∣ a ∈ u},
and a homomorphism f ∶ B → B′ to uf f ∶ ufB′ → ufB defined by (uf f)(u′) =
{f−1(a′) ∣ a′ ∈ u′};

• clp ∶ Stone → BA is the contravariant functor which sends a Stone space to its
Boolean algebra of clopen sets and a continuous function f to f−1;

• pt ∶ Frm → Top is the contravariant functor which sends a frame to its space of
points, this is defined in definition 3.13;

• opn ∶ Top→ Frm is the contravariant functor which sends a topological space to its
frame of open sets and a continuous map f to f−1, see definition 3.6.

The functors uf and clp constitute Stone duality; the functors pt and opn constitute a
duality between sober spaces and spatial frames. Furthermore we have the abbreviations

• P̆ = Z ○Q ∶ Set→ Set, known as the contravariant powerset functor;

• Clp = Z ○ clp ∶ Stone→ Set sends a Stone space to its set of clopen subsets;

• Ω = Z ○ opn ∶ Top→ Set sends a topological space to its set of open subsets.

Along the way, more functors will be defined when required.
We often use diamonds and boxes. When we use these to as formal symbols who

generate a frame we use an “empty” box and diamond, ◻ and ◇. When using boxes
and diamonds to define open or clopen sets in some topological space, we use “crossed”
boxes and diamonds, } and }.

Sometimes we have split up long proofs into several claims. The claims are then
numbered with letters within the proposition or theorem. The proof of such a claim is
closed by a diamond, ◇, instead of a box, in order to differentiate between to proof and
it subproofs.

A.2 The monotone functor on Frm

Recall that the monotone functor M ∶ Frm → Frm is defined as follows: For a frame F
the frame MF is the frame generated by the set MF = {◻a,◇a (a ∈ F )} subject to the
relations

(M1) ◻(a ∧ b) ≤ ◻a

(M3) ◻a ∧◇b ≤ 0 whenever a ∧ b ≤ 0

(M5) ◻ A = {◻a ∣ a ∈ A}

(M2) ◇a ≤◇(a ∨ b)

(M4) ◻a ∨◇b ≥ 1 whenever a ∨ b ≥ 1

(M6) ◇ A = {◇a ∣ a ∈ A},

where a, b ∈ F and A is a directed subset of F . For a homomorphism f ∶ F → F ′ define
Mf ∶MF →MF ′ on generators by

◻a↦ ◻f(a), ◇a↦◇f(a).
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We have seen that M preserves regularity in proposition 3.40. Via the duality from
theorem 3.41 it follows from lemma 3.38 that M preserves compactness as well. But we
can also prove this fact without using the duality to move the problem to the topological
side. Before we prove this, we give an equivalent definition of MF , which is inspired by
theorem 4.2 from [57]. We then show that this equivalent frame is compact whenever F
is. The proof is similar to the proof of theorem 4.2 from [57].

A.1 Definition. Let D be a frame. Define

M′D ∶= Fr⟨℘ωD × ℘ωD (qua ∨-semilattice) ∣
(i′) (γ ∪ {a ∧ b}, δ) ≤ (γ ∪ {a}, δ)
(ii′) (γ, δ ∪ {a}) ≤ (γ, δ ∪ {a ∨ b})
(iii′) (γ ∪ {a}, δ) ∧ (γ, δ ∪ {b}) ≤ (γ, δ) if a ∧ b = 0

(iv′) ⊺ ≤ (γ ∪ {a}, δ ∪ {b}) if a ∨ b = 1

(v′) (γ ∪ { A}, δ) ≤ a∈A(γ ∪ {a}, δ)
(vi′) (γ,{ A} ∪ δ) ≤ a∈A(γ,{a} ∪ δ)

⟩.

Here we use ⊺ to denote the top element of M′D and 1 for the top element of D. The
join structure is given by (γ, δ) ∨ (γ′, δ′) = (γ ∪ γ′, δ ∪ δ′). ◁

A.2 Lemma. Let D be a frame. Then MD ≅M′D.

Proof. Define

µ ∶MD → M̂D ∶ { ◻a↦ ({a},∅)
◇a↦ (∅,{a})

and
η ∶ M̂D →MD ∶ (γ, δ)↦ ⋁

c∈γ
◻c ∨⋁

d∈δ

◇d.

These maps obviously give a bijection. We will show that both assignments preserve the
relations from definition 3.39 and A.1, wherefore they can be lifted to frame homomor-
phisms. Moreover, both maps are frame homomorphisms.

The map µ is a homomorphism because it is defined on the generators and is well-
defined for it preserves the relations from definition 3.39.

We first show that the assignment µ preserves (i) – (vi).

(i) First (i),

µ(◻(a ∧ b)) = ({a ∧ b},∅)
(i′)
≤ ({a},∅) = µ(◻a).

(ii) Second,

µ(◇a) = (∅,{a})
(ii′)
≤ (∅,{a ∨ b}) = µ(◇(a ∨ b)).

(iii) For (iii), suppose a ∧ b = 0, then

µ(◻a ∧◇b) = ({a},∅) ∧ (∅,{b})
(iii′)
≤ (∅,∅) = µ(0).

(iv) Now suppose a ∨ b = 1, then

µ(1) = ⊺
(iv′)
≤ = ({a},∅) ∨ (∅,{b}) = µ(◻a) ∨ µ(◇b) = µ(◻a ∨◇b).
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(v) For (v), first observe

µ(◻ A) = ({ A},∅)
(v′)
≤ ⋁

a∈A

({a},∅) = a∈A µ(◻a) = µ( a∈A ◻a).

From (i’) it follows that

({a},∅) = ({( A) ∧ a},∅) ≤ ({ A},∅)

so that µ(◻a) ≤ µ(◻ A) and hence µ( a∈A ◻a) = a∈A µ(◻a) ≤ µ(◻ A).

(vi) From (vi’) we get µ(◇ A) ≤ µ( a∈A◇a). From (ii’) it follows that (∅,{a}) ≤
(∅, A) so that µ(◇a) ≤ µ(◇ A) for all a ∈ A and hence µ( a∈A◇a) = a∈A µ(◇a) ≤
µ(◇ A). This proves equality.

In order to show that η defines a frame homomorphism we need to prove that it
preserves joins and relation (o’) – (vi’). The preservation of joins is obvious. For (i’),

η(γ ∪ {a ∧ b}, δ) = ⋁
c∈γ

◻c ∨ ◻(a ∧ b) ∨⋁
d∈δ

◇d

≤ ⋁
c∈γ

◻c ∨ ◻a ∨⋁
d∈δ

◇d

= η(γ ∪ {a}, δ).

In a similar way (ii’) can be treated.
For (iii’), suppose a ∧ b = 0, then

η(γ ∪ {a}, δ) ∧ η(γ, δ ∪ {b}) = (⋁◻c ∨ ◻a⋁◇d) ∧ (⋁◻c ∨⋁◇d ∨◇b)
=⋁◻c ∨⋁◇d ∨ (◻a ∧◇b)
≤⋁◻c ∨⋁◇d ∨ 0

= η(γ, δ).

The dual notion (iv’), can be treated similarly.
For (v’),

η(γ ∪ { A}, δ) = ⋁
c∈γ

◻c ∨ ◻ A ∨⋁
d∈δ

◇d

= ⋁
c∈γ

◻c ∨ a∈A ◻a ∨⋁
d∈δ

◇d

= a∈A(⋁◻c ∨ ◻a ∨⋁◇d)
= a∈A(γ ∪ {a}, δ).

Lastly (vi’) is similar.

A.3 Theorem. Suppose D is compact. Then MD is compact.

Proof. The frame MD is compact iff there is a preframe homomorphism ϕ ∶ MD → 2
that is right adjoint to the unique frame homomorphism ! ∶ 2 → MD (cf. [57, Theorem
4.2]).

By proposition A.2 MD ≅ M′D, so we may work with the latter. Because all the
relations in definition A.1 are join stable, we can use the preframe coverage theorem
(theorem 5.1 in [32]) to find

M′D ≅ PreFr⟨ ℘ωD × ℘ωD (qua poset) ∣ same relations as definition A.1 ⟩.
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Define ϕ ∶M′D → 2 by

ϕ(γ, δ) = { 1 iff there are c ∈ γ such that c ∨ (⋁ δ) = 1
0 otherwise

.

We need to check that ϕ is indeed a pre-frame homomorphism. Since ϕ is defined on
generators, it suffices to show that it preservers the relations (i’) – (vi’), because if it
does it can be lifted in a unique way to a frame homomorphism M′D → 2. We check
that ϕ preserves the relations one by one.

(i’) Suppose ϕ(γ ∪{a}, δ) = 0, then c∨⋁ δ = 0 for all c ∈ γ and (a∧ b)∨⋁ δ ≤ a∨⋁ δ = 0.

(ii’) If ϕ(γ, δ ∪ {a}) = 1, then c ∨⋁(δ ∪ {a}) = 1 for some c ∈ γ, so c ∨⋁(δ ∪ {a ∨ b}) ≥
c ∨⋁(δ ∪ {a}) = 1.

(iii’) Suppose ϕ(γ ∪ {a}, δ) = 1 and ϕ(γ, δ ∪ {b}) = 1. Then either there is some c ∈ γ
such that c ∨⋁ δ = 1, which implies ϕ(γ, δ) = 1, or a ∨⋁ δ = 1. In the latter case,
note that we also have some c′ ∈ γ such that c′ ∨⋁ δ ∨ b = 1, so that

c′ ∨⋁ δ = ’̧ ∨⋁ δ ∨ (a ∧ b) = (a ∨⋁ δ ∨ c′) ∧ (c′ ∨⋁ δ ∨ b) = 1 ∧ 1 = 1.

The first equality holds because a ∧ b = 0. Again we find ϕ(γ, δ) = 1.

(iv’) If a ∨ b = 1, then a ∨⋁(δ ∪ {b}) = 1 so ϕ(γ ∪ {a}, δ ∪ {b}) = 1.

(v’) Suppose ϕ(γ ∪ { A}, δ) = 1, then either c ∨ (⋁ δ) = 1 for some c ∈ γ, or 1 =
( A) ∨ (⋁ δ) = a∈A(a ∨ (⋁ δ)) (note that the latter is indeed a directed set,
because A is). By compactness of D this gives a ∨ (⋁ δ) = 1 for some a ∈ A. So
both cases yield ϕ( a∈A(γ ∪ {a}, δ)) = 1.

(vi’) Suppose ϕ(γ,{ A} ∪ δ) = 1, then, for some c ∈ γ, we have

1 = c ∨⋁({ A} ∪ δ) = (c ∨ a ∨⋁ δ)

and by compactness we must have c ∨ ({a} ∪ δ) = 1 for one of the a. (The set
{c ∨ a ∨⋁ δ ∣ a ∈ A} is directed and by (ii’).)

Lastly, we need to check that ϕ is right-adjoint to ! ∶ 2 → M′L (defined by 1 ↦ ⊺ =
(1, 1) (note that (1, 1) is in the equivalence class of ⊺), and 0 ↦ (∅,∅)). It suffices to
show that ϕ(!(p)) ≥ p and !(ϕ(γ, δ)) ≤ (γ, δ). For the first, suppose p = 1, then !(p) is
the equivalence class of (1, 1) and ϕ(!(p)) = 1. For the second, if ϕ(γ, δ) = 1, then there
are c ∈ γ such that c ∨ (⋁ δ) = 1 (in particular δ ≠ ∅) and hence

1 = ({1}, δ) = ({c ∨ (⋁ δ)}, δ) ≤ ({c}, δ) ≤ (γ, δ).

The first inequality follows from recalling that δ is a finite set and applying (vi’) repeat-
edly.

Proposition 3.40 and theorem A.3 combined yield the following result.

A.4 Corollary. The functor M on Frm preserves compactness.
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A.3 For reference

A.5 Lemma. Let C and D be categories and I ∶ C → D, J ∶ D → C two functors that
constitute a dual equivalence between C and D. Let S ∶ C → C and T ∶ D → D be
endofunctors. The following are equivalent

(i) there is a natural isomorphism η ∶ S ○ J→ J ○T;

(ii) there is a natural isomorphism µ ∶ T ○ I→ I ○ S.

Proof. (i) to (ii): define µ by

TI IJTI ISJI IS.
ıTI IηI ISε

These are all natural isomorphisms. (ii) to (i) is similar.

A.6 Lemma. Let C and D be categories and I ∶ C → D, J ∶ D → C two contravariant
functors that constitute a dual equivalence between C and D. Let ε ∶ Id → J ○ I and
ı ∶ Id → I ○ J be the corresponding natural isomorphisms. Let S ∶ C → C and T ∶ D → D be
endofunctors. Suppose there is is a natural isomorphism η ∶ S ○ J → J ○T. Then there is
a dual equivalence

Alg(S) ≡op Coalg(T).

Proof. We define two functors X ∶ Alg(S)→ Coalg(T) and Y ∶ Coalg(T)→ Alg(S) and we
will give two natural isomorhisms IdAlg(S) ≅ Y ○X and IdCoalg(T) ≅ X ○Y.

Definition of X. By lemma A.5 we get a natural isomorphism µ ∶ T ○ I→ I ○ S.
Let δ ∶ SX → X be an S-algebra. Applying I gives Iδ ∶ IX → ISX and composition

with µ−1
X gives

IX ISX TIX.Iδ µ−1
X (A.1)

So if we put γδ ∶= µ−1
X ○ Iδ the pair (IX,γδ) is a T-coalgebra. Define X(X, δ) ∶= (IX,γδ).

Let f ∶ X → X ′ be a S-algebra morphism from (X, δ) to (X ′, δ′). The the following
diagram commutes,

SX SX ′

X X ′

Sf

δ δ′

f

(A.2)

Moreover, the following diagram commutes

IX IX ′

ISX ISX ′

TIX TIX

If

Iδ Iδ′

ISf

µ−1
X

µ−1
X′

TIf

Commutativity of the upper square follows from applying I to the diagram in (A.2) and
commutativity of the lower square follows from the fact that µ is a natural isomorphism.
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This shows that If is a T-coalgebra morphism from (IX,γδ) to (IX ′,γδ′). Define Xf ∶=
If .

Definition of Y. Define Y ∶ Coalg(T) → Alg(S) in a similar way, where Y(X,γ) =
(JX, δγ) and Yf = Jf . Here δγ is the composition

SJX JTX JX.
ηX Jγ

(A.3)

The natural isomorphism ξ ∶ IdAlg(S) → Y ○ X. We need an algebra isomorphism
ξ(X,δ) ∶ (X, δ)→ Y ○X(X, δ) = (JIX, δγδ). That is, the following diagram must commute

SX SJIX

X JIX

Sξ(X,δ)

δ δγδ

ξ(X,δ)

Let ξ(X,δ) ∶= εX . We claim that with this definition the diagram above commutes.
Obviously this yields an isomorphism. For commutativity:

SJIX JISJIX

JISJIX JIJTIX

SX JISX JTIX SJIX

X JIX JIX JIX

εSJIX

εSJIX

JIηIX

ε−1
SJIX

JIηIX

JiTIX

εSX

δ

S(εX)

JIS(εX)

JµX

JIδ Jγδ

η−1
IX

δγδ

εX

Since I and J form an adjunction, we have IdJ = ε−1
J ○ Jı−1 (see e.g. [40] section IV.1

theorem 1), so ε−1
J = Jı.

The upper square commutes trivially. The middle square commutes by definition
of µ. The squares left and right of the middle square commute because ε is a natural
transformation, as does the left lower square. For the middle right square, recall ε−1

J = Jı.
The middle and right lower squares commutes by definition of γδ and δγ . It follows that

εX ○ δ = δγδ ○ S(εX),

as desired. This gives the natural isomorphism IdAlg(S) → Y ○X.

The natural isomorphism ζ ∶ IdCoalg(T) → X ○Y. This can be treated similar to ξ.

Conclusion. This proves that there is a dual equivalence Alg(S) ≡op Coalg(T).

As we often work with Stone duality and Isbell duality, the previous lemma provides
a powerful tool.
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A.7 Lemma. (i) Pullbacks in Sob are computed as in Top.

(ii) Pullbacks in KHaus are computed as in Top.

Proof. (i) Let

X Y X′f f ′
(A.4)

be a cospan in Sob. The pullback of this diagram in Top is P = {(u,u′) ∈ X×X′ ∣ f(u) =
f ′(u′)} viewed as a subspace of X ×X′. Let π ∶ P → X and π′ ∶ P → X′ be projections.
Since dual equivalences send limits to colimits and vice versa the diagram

pt(opnX) pt(opnX′)

pt(opnX) pt(opnY)

pt(opnπ)

pt(opnπ′)

pt(opn f ′)

pt(opn f)

is a pullback diagram in Top. By proposition 3.14 the cospan

pt(opnX) pt(opnY) pt(opnX′)pt(opn f) pt(opn f ′)

is isomorphic to the cospan in (A.4), hence pt(opnP) is also a pullback of the cospan in
(A.4). Since pullbacks are unique up to isomorphism P ≅ pt(opnP). By definition 3.13
the latter is sober, therefore P is sober.

(ii) Suppose the diagram of (A.4) is in KHaus and we take the pullback P in Top. The
product of two Hausdorff spaces is a Hausdorff space and the subspace of a Hausdorff
space is Hausdorff, so P is Hausdorff. Suppose (u,u′) ∈ X × X′ is not in P. Then
f(u) ≠ f ′(u′) in Y so there exist disjoint open sets a,a′ in Y containing u and u′

respectively. Then a × a′ is open in X ×X′ and disjoint from P. Therefore P is closed.
As the product of two compact sets is again compact and closed subsets of compact sets
are compact, P is compact.

A.8 Lemma. Let f ∶ A → B be a Boolean algebra homomorphism. Then f is injective
if and only if f−1(⊺B) = {⊺A}.
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