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Abstract

With the exponential growth of data we as humans collect, data storage is more impor-
tant than ever. Storage systems are generally assumed to be fault tolerant and database
engines rely on these systems working properly. Lesser known is that silent data corruptions
do occur. Data engines often promise to be robust, highly consistent, fault-tolerant, sur-
vivable and durable. But what happens in the event that the database receives corrupted
data? This project will set a stepping stone towards new research on database robustness in
the presence of simulated data corruptions. For this project an open-source database testing
framework named Jepsen is extended with a script simulating silent data corruptions. Addi-
tionally two workloads are defined, one simulating money transfers for a bank, and another
simulating a monotonic function in order to test index corruption. All in all, two bank tests
showed erroneous behaviour under fault injection. Moreover, one case is identified where
inconsistencies occur when using database indexes.
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CHAPTER 1

Introduction

We are living in an economy that is becoming more and more driven by data [61]. Where in
the past decades software primarily generated money, in the present this role has arguably been
transferred to data. The amount of data we as humans collect grows exponentially (see Figure
1.1). Data production in 2020 will be 40 times greater than it was in 2009 [19]. With this
development, storing huge amounts of data efficiently and reliably is paramount.

Much of this data is stored in databases. Databases are used in software from small web
applications, such as web-shops or Internet fora, to large corporations like banks or the govern-
ment. We trust database software with important data and therefore have certain expectations
of their functioning. Arguably data from an Internet forum is not that critical. However, for a
more sensitive application, such as a bank or governmental organisation, reliably storing the data
is critical. Database systems are considered reliable if their transactions comply with a certain
set of properties. ACID (Atomicity, Consistency, Isolation, Durability) is probably the most
important set of properties defined for reliable transactions, providing a good judgement for the
quality of a database management system [26]. Atomicity, consistency and isolation describe the
semantic properties between server and client, whilst durability concerns itself with the integrity
of committed data. Once data is successfully stored it should remain as so, without losing its
integrity. Adhering to these properties might seem like a trivial task, yet this is not as straight-
forward as it seems. For non-clustered database systems these properties pose implementation
challenges, for distributed database systems they are even more challenging [5]. Not all database
systems implement these properties equally well, leading to a variance in quality.

Meanwhile the popularity of Cloud infrastructures has surged. Companies including Ama-
zon1, Google2 and Microsoft3 all responded to this demand by providing Cloud services in various
forms. Cloud infrastructures are highly scalable and cost-effective, making them ideal for compa-
nies with increasing demands. Be that as it may, Cloud infrastructures do not provide the same
hardware stability that dedicated servers bring. Instances might undergo physical migrations
within a datacentre or temporarily suffer from decreased availability of resources. Furthermore,
all large Cloud companies had several substantial outages in the past [4][18][58]. Though incon-
spicuous, these instabilities could have a hefty impact on database systems. These instabilities
may not, under any circumstance, cause the database system to violate the ACID properties.
For example, pending transactions may not leave any traces visible for the client after a crash.
In other words, transactions should be atomic. These types of potential complications are well
known and therefore much effort has recently been put into preventing these kinds of errors,
making database systems Cloud-ready.

1Amazon Web Services: https://aws.amazon.com/
2Google Cloud Computing: https://cloud.google.com/
3Microsoft Azure: https://azure.microsoft.com/
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Figure 1.1: Data growth plotted per year. Post 2013 figures are predicted (Data source: UNECE,
image source: [62]).

1.1 Challenge

In contrast to these familiar problems there is another, lesser known category of issues that could
lead to erroneous behaviour in database engines. Storage systems are generally assumed to be
fault tolerant and database engines rely on these systems working properly. Should errors occur,
the storage system is expected to report these problems to the software requesting the data,
either by responding with an error code, closing the stream or ultimately crashing the operating
system. This way database systems are given the chance to respond accordingly, preserving
ACID guarantees. Errors that are not detected by the storage system are called silent data
corruptions.

Data corruption occurs more often than one might think, both in memory and hard drives [54].
Hardware is susceptible to ageing, bit rot, component failures and external factors such as cosmic
rays. State of the art datacentres have grown immensely, containing millions of storage devices.
As a consequence, chances of data corruption have increased [23]. Under such circumstances it
is not unthinkable that silent data corruptions might slip through.

Database engines often promise to be robust, highly consistent, fault-tolerant, survivable
and durable. The robustness of database engines relies on the fact that errors in the storage
are detected by the storage system. But what happens in the event that the database receives
corrupted data? Does the database system provide some method of corruption detection, and
does this method work? Is it despite this still possible for the client to receive corrupted data?
Do other errors occur during fault injection? What are those errors?

1.2 Contribution

Research on the effects of silent data corruptions on database systems is sparse. This project will
set a stepping stone towards new research on database robustness in the presence of simulated
silent data corruptions.

This project will investigate CockroachDB, a distributed transactional SQL database [35].
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Around 2009 NoSQL databases started to gain popularity as an alternative to relational database
systems [52]. Throughout the years, their developers started to value the advantages of transac-
tional databases. This is where NoSQL databases started to embrace features from these transac-
tional systems. CockroachDB is such a database. It is built upon RocksDB, a strongly-consistent
and transactional key-value store [51]. CockroachDB is developed to support distributed strongly
consistent ACID transactions. When configured correctly it is claimed to survive disk, machine,
rack and even datacentre failures with minimal latency.

Simulating silent data corruptions is generally done with the help of a fault injection frame-
work. The developers at Cockroach Labs devised several tests in order to verify the capabilities
of their engine, though none of them are conducted under the influence of simulated data cor-
ruptions [48]. The existing tests are built with the help of an open-source database testing
framework called Jepsen [31][32].

This research will extend the tests devised by Cockroach Labs in order to test how the engine
holds under simulated silent data corruptions.

1.3 Thesis outline

This thesis will start at Chapter 2 with a study on related work done in this field of research.
Next, Chapter 2 will study three subjects relevant to this project: data corruption, database
consistency and the CockroachDB database system. Chapter 3 describes the methodology used
to test the engine and explains the implementation details. Results collected with the experiments
are depicted in Chapter 4. Finally, Chapters 5 and 6 will draw conclusions from the collected
data and discuss the research in further detail.
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CHAPTER 2

Background & Related work

This chapter will start by reviewing related work done in this field of research. Next, three
important topics relevant to this project will be studied. First of all we will cover the possi-
ble causes of (silent) data corruption and discuss how often these corruptions do occur. Next
database consistency will be addressed. Finally, we review some details of the relatively new
CockroachDB engine.

2.1 Related work

This section will describe related work done in this field of research. Firstly several fault injection
frameworks will be described. These frameworks are used in similar scenarios and have their own
advantages and disadvantages. Thereafter related research on databases is reviewed.

2.1.1 Fault injection frameworks

The frameworks considered for this project are all SWIFI (software fault-injection) frameworks,
which in contrast to hardware fault-injection frameworks do not require specialised hardware.
Data corruptions are easily generated with software by flipping bits in memory cells, hard drive
sectors or individual files [30]. Using software not only eliminates hardware costs but also eases
creating experiments with different fault models.

There is a variety of test frameworks available, all with their own pros and cons. Still,
most of them share the same system structure. Fault injection frameworks generally control one
or multiple target systems (see Figure 2.1). The goal of fault injection frameworks is to run
one or more experiments containing a workload. These workloads are generated by a workload
generator. The controller, which can be located either on the system itself or on an external
control host, makes sure all experiments are monitored and starts the different fault injectors
and workloads [30]. A few of these frameworks are shown below.

NFTAPE is a framework designed to inject a high variety of fault models. It does so by using
LWFI’s (Lightweight Fault Injectors) [56]. The designers have chosen this approach as other
frameworks proved hard to port to new systems. LWFI’s are still system dependent, but easy to
implement as they are lightweight. Other functionality, including logging and communication,
is taken care of by the framework independently. This allows the user to easily implement new
fault scenarios, as only the LWFI needs to be written. LWFI’s follow a default interface, making
them easy to interchange. Tests are coordinated by a control host, which in turn communicates
with all the target nodes. Each target node runs its own process manager that makes sure the
correct workloads are executed. The type of fault injection is defined by the LWFI, which in
turn is triggered by a fault trigger. Fault triggers exist in many forms: application state, timer,
performance counter, random, et cetera.

Stott et al. used NFTAPE to inject memory faults into a scientific image processing applica-
tion [56]. It resulted images clearly distorted to the human eye. The research does not describe
a fault injector that simulates data corruption. However, according to the paper it should be
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Figure 2.1: Typical fault injection system (Source: [30]).

relatively easy to do so by by using a LWFI. The NFTAPE framework is unfortunately only
available under license.

Xception is a software fault injection framework that uses the processor to inject faults.
Carreira et al. utilised the debugging and performance monitoring features of the PowerPC
601 processor to inject faults into the software [7]. This allowed monitoring the effects of the
injections with minimal interference to the application. Their results show that 73% of all faults
led to the application producing incorrect results. Xception is an older framework, implemented
on the PARIX operating system, which makes it unfit for our purposes.

The Library-Level Fault Injector (LFI) is designed to inject faults at (shared) library level.
The framework consists of two main components: the profiler and the controller [34][36]. The
profiler scans for exported functions and their corresponding error response codes in libraries, and
automatically generates test cases for all the functions it finds, called the fault profile. This fault
profile, combined with a fault scenario, is then fed to the controller. The fault scenario describes
a sequence of faults to be injected based on defined triggers. From this data the controller
creates so called interception stubs. These stubs sit between the application and the original
library. When triggered, the interception stub manipulates the response by modifying the stack,
returning an error code instead of the original response. LFI only supports fault injection by
response codes, though it could probably be expanded by manipulating other data structures as
well. All execution information is collected in a log together with a replay script. This replay
script can be used to replay the experiment and diagnose/debug the results. In practice, LFI is
used in combination with MySQL, revealing several bugs in the engine [37].

2.1.2 Database testing

Subramanian et al. tested the influence of type-aware pointer corruption (TAC) on the MySQL
engine [57]. As it is possible that disks become corrupted, the database engine should detect
these inconsistencies. However, their results show that of the 145 faults they injected 110 resulted
in serious issues. Moraes & Martins used a fault injection tool called Jaca validated an ODBMS
component called Ozone. In 45 of the 2700 conducted experiments they observed a failure
[43]. Ng & Chen investigated the influence of reliable memory on Postgres95 (a predecessor of
PostgreSQL [49]) under fault injection [42]. They showed that in 2.3% to 2.7% of the test cases
the database got corrupted. Zheng et al. tested the resilience of eight widely used databases
under power faults [63]. They found seven of the eight databases failing to adhere to the ACID
rules under power faults. In contrast Brown found the SQL 2000 server to be robust to a wide
range of storage faults [6].
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2.2 Data corruption

Nowadays, especially with large-scale IT infrastructures housing thousands of storage devices,
component failures occur frequently [23]. Hard disk drives are known to have many (moving)
components, which slowly degrade during their lifetime [55]. Electrical components might corrode
over time or the motor may fail, resulting in the entire disk to fail. Hence, disk drives are known
to fail coincidentally. Schroeder & Gibson analysed 100.000 disks over an extended period of
time and found annual disk replacement rates of 2-4% [54]. Though problematic, whole disk
failures are not the focus of this project.

Besides disk failures, storage systems also suffer from (silent) data corruptions. Data cor-
ruptions are errors in the storage system that occur unnoticed, resulting in the storage system
possibly returning faulty data to the user. Bairavasundaram et al. have shown data corruption
occurrence is substantial [2]. They studied a large production storage system containing 1.53
million disk drives of various models over a period of 41 months. During this period the disks
encountered a grand total of over 400.000 checksum mismatches. Moreover, for some models a
distressing 4% of the disks suffered from checksum mismatches in a period of 17 months. As
a final point, multiple repair and/or checking tools exist for several database systems including
SQL server [39], MySQL [40] and Oracle [45]. Altogether this shows that data corruptions occur
and should be taken into consideration when developing applications. Data corruptions can be
caused by both software- and hardware errors. In many cases the cause of the corruption can
not be identified.

To start with, disk controllers contain more firmware, chips and processing power than one
might think. Whereas old computer systems controlled the disk directly using the CPU, over
time this responsibility shifted to the disk drive. As an example, firmware from Seagate contains
more than 400.000 lines of code [28]. Big software projects inevitably contain bugs, and disks
are no exception. Issues in the firmware could cause numerous data corruptions, such as lost- or
misdirected writes [41][57].

Secondly, disk drives suffer from a phenomenon called “bit rot” or bit flip. Traditional hard
disk drives are mostly magnetic. Bit rot is a term used to indicate that one or several bits on a
magnetic platter have turned sides, resulting in a change of data. Firmware of disk controllers
correct most of these errors with the help of error correcting code (ECC), though not all errors
are detected [33]. Not only magnetic drives but also flash/DRAM based storage devices suffer
from bit rot. SSDs gained popularity over the past decade as they perform better than traditional
disk drives. Cosmic rays, which are high-energy particles from space, have the power to flip bits
inside the flash memory of SSDs or DRAM memory [22]. Bit rot in DRAM memory poses its
own problems. In the event that data is successfully stored on a (magnetic) disk drive, down the
line retrieving the same data could still be perceived as corrupt when DRAM is corrupted. As a
matter of fact, even controller firmware could be modified as a result of bits being flipped, possibly
leading to erroneous firmware execution. Expensive ECC memory is available on the market,
able to detect and correct bit errors and immune to single-bit errors. Because ECC memory is
relatively expensive, it is mostly used by scientific and financial organisations. Moreover, it is
due to this reason datacentres rarely use this ECC memory in their servers.

Lastly, single disk storage sizes have shown a constant growth over the last decades (Figure
2.2). Growing the size of a single disk drive comes down to increasing the number of platters
and the data density per platter. Consequently, reading data becomes both more complex and
error prone. Finally, latent sector errors recently gained attention.

Techniques have been developed over the years trying to prevent these kinds of errors. Check-
sums exist at different levels (i.e. block-, sector- or page level), attempting to detect and recover
from errors. Furthermore, effort has been put into improving error correcting code. Additionally
RAID, which depending on the level generates mirrors or parity data, can be configured in order
to improve redundancy. Altogether this results in a list of possible techniques, where ironically
a poor combination of choices may lead to problems itself [33].

RAID (redundant array of independent disks) is a technology primarily developed for combin-
ing multiple disks redundantly into one virtual disk [46]. Depending on the RAID level, several
methods are used to recover from the loss of one or more whole disks. RAID 5, for example,
generates parity information on every write. To improve redundancy this parity information is
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Figure 2.2: Hard drive capacity over time (Source: [27]).

distributed over the remaining available disks. In the event of a failed disk RAID 5 is able to
recover the data of the lost disk by recalculating it using parity information residing on the other
disks [12]. Thus RAID improves the reliability of storage systems in the event of a lost disk by
adding redundancy. However, RAID is not designed to detect silent data corruptions on its own
[2]. With RAID 5, when a parity block is corrupt, the parity computation will be incorrect. Yet,
RAID can not detect which block is corrupt.

Ironically, RAID is in some reconstruction cases the actual cause of data corruptions. Kri-
oukov et al. studied production systems and found cases of parity pollution [33]. Parity pollution
is a type of corruption that occurs in the RAID parity blocks. In the event of a disk failing,
RAID will reconstruct this disk using the possibly corrupted parity data, consequently spreading
the corruption across the array. Bairavasundaram et al. found that on average 8% of the drive
corruptions were detected during RAID reconstruction. One might say that data scrubbing, a
method periodically scanning the disk for errors, will reduce these changes. Not only is data
scrubbing computationally expensive, but recent insights prove data scrubbing to be the main
cause for parity pollution [33].

It should be noted that not all systems consist of multiple disks, making them unsuitable for
a RAID configuration. Even if machines have multiple disks, RAID is not configured by default.
Moreover, little info is available on the internals of Cloud infrastructures, making it difficult to
verify whether RAID is configured on those platforms.

Moreover, in the world of system design there is a principle called the end-to-end principle.
This principle states that error correction should always be done on the highest level [53]. Solving
errors in lower levels helps the database system correcting errors, allowing for better performance,
but does not solve the whole problem.

In summary, (silent) data corruptions do occur, and although several attempts have been
made to reduce the odds of these corruptions, they can not be fully prevented. The right
combination of faults and repair activities may still result in data corruptions, and higher level
software, such as a database system, should take care into detecting these errors [33]. The risk
of receiving corrupted data from the storage system is existent, and should be acknowledged by
software developers.
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2.3 Database consistency

Database consistency can be defined in different ways. One definition states that any transactions
started in the future must see the effects of transactions committed in the past [24]. Another
definition states that database constraints must not be violated, meaning that triggers, cascades
and constraints should hold under transaction commits. And yet another definition states that
consistent transactions should bring a database from one valid state to another. Consistency
exists in many forms, from field type constrains all the way up to data consistency over many
nodes in a distributed system. Over the years multiple theories have been formed on consistency
models, including ACID, CAP, BASE, and PACELC.

Database engines are expected to be (atomically) consistent. We exemplify this with a bank
transferring money. Consider a scenario where money is transferred from account A to account B.
Doing so requires the system to subtract a certain amount of money from account A and adding
this same amount to account B. Translated to database commands this sequence of operations
requires two SELECT and two UPDATE queries. Take for example a transfer of e 10 from
account A to account B. The starting balance of account A is e 150, and account B holds e 225.

1. The first SELECT query retrieves the balance of account A, and establishes this is e 150.
This SELECT query is done for two reasons. Firstly, the current balance is needed to
determine whether there is enough money available for the transfer. Secondly, the retrieved
value is used to set the new balance.

2. The first UPDATE query updates the balance of account A to e 140.

3. The second SELECT query retrieves the balance of account B, and establishes this is e 225.

4. The second UPDATE query updates the balance of account B to e 235.

In a real world situation, the database system of a bank would execute thousands of trans-
actions simultaneously. This is where isolation and consistency become very important. Below
we will illustrate a situation where this could go wrong. For this example we will use the same
accounts A and B but add an extra account C with a balance of e 75. In this example two
transactions are described, T1 and T2, where T1 is the transaction described above and T2 is a
new transaction, transferring money from account A to account C.

1. T1 is processing a transfer from account A to account B.

2. T2 is processing a transfer from account A to account C.

3. T2 updates the balances of account A and account C

4. Meanwhile, T1 is also calculating the new balance for account A, but does this with the
same value T2 initially received. When T1 now updates the balance of account A, the
changes made by T2 are lost, and extra money is created.

Another discrepancy that may occur in step 4 is seeing the newly written value of T2, breaking
isolation. This could make A negative for example, where this may not be allowed. Moreover
this illustrates the importance of atomic transactions. Imagine the database system has updated
the value for account A but crashes before the update on account B is executed. Would this
be the case, e 10 is lost in the process. Such a scenario would be unacceptable in a real-world
application. This can be prevented by implementing snapshot isolation, which is reviewed in the
CockroachDB section.

2.3.1 ACID

ACID describes four characteristics (Atomicity, Consistency, Isolation, Durability) every trans-
action on a database should enforce in order for a database engine to be reliable [26]:

Atomicity Only transactions that completely succeed should be committed. If a part of the
transaction fails, the whole transaction should be rolled back as if it never happened.
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Consistency A transaction should bring a database from one valid state to another, without
ever observing inconsistent data or producing inconsistent data. This means checking
before and after a transaction whether the data is consistent, specified by rules based on
constraints, cascades and triggers.

Isolation All transactions should execute as if executed serially. One transaction may not
observe the transitional state of another ongoing transaction.

Durability Committed transactions should never be lost, even under the influence of crashes
or errors.

By processing all requests to a database engine serially these restrictions would be relatively
easy to maintain, but this would have a significant impact on performance, as any form of
concurrency is eliminated. Therefore concessions have to be made.

2.3.2 ACID transactions

CockroachDB achieves distributed ACID transactions by using the following phases during a
transaction: switch, stage, filter, flip and unstage [59].

Before a transaction modifies a value it first creates a switch [59]. This switch can not be
accessed concurrently and is represented by a Boolean: it can either be on or off and is off by
default. Together with the switch a transaction record is created. CockroachDB uses transaction
records internally to manage transactions, and has either a state of PENDING, ABORTED
or COMMITTED.

When the transaction record is created and linked to the switch, the staging phase is entered.
In the staging phase the engine writes the modified value to the database. The original value is
not overwritten but instead a new record is inserted called a write intent (see Figure 2.3).

The next phase is the staging phase. In this phase the database engine stages the transaction
changes. It does so with a ‘write intent’. A write intent does not overwrite the original value
but stores it in its proximity.

Would another client ask for the value which the transaction is updating, it would find the
intent. Through this intent, it will find the corresponding transaction record with the switch.
Would the switch be off, the original value would be returned to the client. In the case the switch
is on, the new value which resides in the write intent will be returned. This is shown in Figure
2.4 and is called the filter phase.

In the flip phase the transaction record will update its state to COMMITTED and turn
the switch on. This will return the updated value to all new clients requesting the record. This
completes the transaction. Because the values still consist of write intents, there is some cleaning
up to be done. This is done in the final ‘unstage’ phase. The cleaning up is done because of
performance reasons, as filtering is expensive (it requires to communicate between nodes to

Figure 2.3: Write intent on key A (Source: [60]).
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obtain the transaction record). This is done by removing the write intent and writing the final
value [60]. Figure 2.4 shows an example of a request.

2.3.3 Snapshot isolation

Transactions should not see intermittent or uncommitted data that results from other unfinished
transactions. This is where SI (snapshot isolation) comes into play.

SI is something that is not mentioned by ACID. One of the oldest models of transactional
databases was the ACID model. In the time that the ACID model was developed, there was
more focus on individual nodes than the notion of a distributed database. Database engines
were mostly sequential, implying linearisability. Therefore there was not any distinction between
linearisability and serialisability. As a result, ACID does not suffice anymore when talking about
distributed databases.

Snapshot isolation essentially enables two things. Firstly it enforces that transactions only
see data from transactions that are already committed. It has some form of a snapshot of the
database’s data of the moment the last transaction is committed [3]. This means that it reads
the last committed value from a list of committed values at the beginning of the transaction.
Secondly it only allows a transaction to commit when the updates it has made have not resulted
in a conflict with other updates that were done concurrently. Snapshots can be extended by
serialising. This is called SSI (serialised snapshot isolation).

2.4 CockroachDB

Databases can roughly be divided into two types: relational databases and NoSQL databases.
The concept of relational databases is developed around 1970 [10], whereas NoSQL databases
started to gain popularity around 2009 [52]. Currently more than 255 different NoSQL databases
of different types exist, including key/value-, document-, graph- and columnar databases [13][52].
Because the amount of data grows, database systems have to scale.
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Figure 2.5: Scaling vertically/up vs. horizontally/out (Source: [20]).

Scaling can be done in two dimensions, either vertically (up) or horizontally (out) (see Figure
2.5). Scaling vertically means adding processors, storage and/or memory to a single machine.
Not only are bigger machines more expensive, there is also a limit to which you can size a single
machine. The better alternative is to scale horizontally by combining multiple machines into a
single cluster. Scaling horizontally is more cost effective and contributes to the overall availability
of a database.

For relational databases scaling horizontally was troublesome as they were (initially) not
designed to run in clusters [52]. NoSQL databases tend to scale more easily, allowing vast
amounts of data to be stored in a distributed manner. However, by distributing a database
across multiple machines, it is harder to maintain ACID transactions.

Throughout the years NoSQL developers started to value the advantages of transactional
databases. This is why NoSQL databases such as CockroachDB started to embrace features from
these transactional systems. CockroachDB is an open-source lock-free distributed SQL database
and currently in beta stage1. It is developed to support distributed strongly consistent ACID
transactions using the RAFT consensus algorithm [44]. It is built upon the transactional and
strongly-consistent key-value store named RocksDB [51]. The developers claim CockroachDB is
able to survive disk, machine, rack and even datacentre failures with minimal latency [35].

Though it might seem as a new approach to use a key/value store as the back end of an SQL
database, other database engines have had the same design, including MySQL, Sqlite4 and other
engines [47]. Though it is possible to setup multi node clusters, CockroachDB is also able to run
as a single instance. It can scale horizontally by joining a running node (that may be connected
to a cluster).

CockroachDB is configured by default to store 3 replicas of its data. In the case a node
crashes, the replicate data is automatically rebalanced among the other nodes. This makes sure
the database is highly available. New locations in the cluster are identified and missing replicas
are re-replicated in a distributed fashion [47].

1Version beta-20160421 will be used in the course project.
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CHAPTER 3

Methodology

This chapter will go into detail on how CockroachDB is tested under fault injection. First of all
details on the test environment will be depicted. This section studies the network topology and
shortly discusses the Jepsen framework. Subsequently the second section will review the bank
and index workloads and explains how they are defined in the framework. Finally fault injection
techniques and methods are addressed.

3.1 Test environment

The test environment consists of a cluster of five interconnected nodes and a single master node,
all running on their own virtual machine (see Figure 3.1). For the remaining of this project the
nodes will be referred to as N1, N2, N3, N4 and N5 and the master node will simply be named
master. The job of the master is to execute the individual tests. This involves configuring the
cluster, opening the client connection, executing the queries and collecting the results.

Both the nodes and the master run on a VM (virtual machine). Several reasons motivate the
use of virtual machines. Firstly, there are numerous companies offering low-priced VM instances,
including Amazon [1], Microsoft Azure [38], Google Cloud Engine [25] and DigitalOcean [11].
Secondly, installing and configuring six physical machines would be more time consuming and
more expensive. Last but not least, VM infrastructures allow for easy scaling. New instances are
configured in a matter of minutes. Accordingly, additional master and/or node instances can be
instantiated with ease, allowing for extra experiments if desired.

master

N0

N1

N2

N3

N4

Figure 3.1: Master coordinating five nodes. Connections between the nodes are not shown.

Both the nodes and the master run on a Linux environment, specifically the Ubuntu 15.10
(Wily Werewolf) distribution. Although this distribution is used, the framework is configurable
for other distributions as well. This project uses the Cloud infrastructure of the Google Cloud
Engine [25]. As Cockroach Labs provided credit for the Google Cloud Engine, this infrastructure
is used for this project.
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As mentioned before, the experiments will be powered by the Jepsen framework [32]. Specif-
ically, a branch of the test framework is used which Cockroach Labs used in their previous tests.
This branch will be extended by adding specific workloads that will be reviewed later in this
chapter. The Jepsen framework is written in the LISP programming language Clojure [29] and
houses a sizable amount of useful functions for running experiments. These functions include log-
ging data, communicating over SSH, plotting results, controlling nodes and generating random
events.

3.2 Workloads

To test the database engine we devised two tests, a banking test and an index test. Both simulate
different workloads under which the database is expected to maintain consistency. Workloads
are a set of generated events to which the client responds, i.e. a bank transfer or a read request.
A test definition defines how and when events are emitted, which is mostly done in a random
fashion. A coded example of such a workload definition is shown below:

(->> (gen/mix [bank-read bank-diff-transfer])

(gen/clients)

(gen/stagger 1)

(cln/with-nemesis (:generator nemesis)))

(gen/clients (gen/once bank-read)))

This example defines a mix of read and transfer events of a bank. These events are emitted
to all the clients (nodes) and are uniformly randomly generated every 0 > x > 1 seconds, and
at the end of the test one final read event is emitted. When fully executed, a checker analyses
the history of the test and verifies whether all results are valid according to a set of predefined
constraints. If all these constraints are met, the test is marked as valid.

3.2.1 Banking test

A bank is a good example of a situation in which we take for granted that it works according to
our rules of finance. For example, it is not possible to transfer money to another person if we do
not have the sufficient balance. Also, we trust our bank to preserve our correct balance without
ever losing track. Imagine the catastrophes that might occur if this went terribly wrong.

It might seem logical that this all works out well, yet it is anything but straightforward.
Records could get manipulated, damaged or even lost. Moreover, if not implemented correctly,
account transfers might lead to inconsistencies. Consider the following scenario:

1. Account X has a balance of e 20.

2. Transaction 1 verifies whether account X has enough balance to transfer e 12 from account
X to account Y, and states this transfer is possible.

3. Concurrently, transaction 2 verifies whether account X has enough balance to transfer e 18
from account X to account Z, and also states this transfer is possible.

4. Transaction 1 executes the transfer and moves e 12 from account X to account Y.

5. When transaction 2 continues to execute its transfer, either one of two situations may occur
if snapshot isolation isn’t implemented properly:

(a) transaction 2 subtracts e 18 from the balance, resulting in a negative balance of e -10.

(b) transaction 2 ignores the balance updated by transaction 1 and overwrites the balance
with its previously known value of e 20 minus e 18, thereby creating extra money.

Data corruption might influence the consistency of a database system, and therefore this
section will describe the tests devised to check the database system under fault injection.
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Table 3.1: The most simplistic structure for
storing balances of accounts.

account balance

A 90
B 155

Table 3.2: Transactions represented by tuples
in the format (∆, Balance).

timestamp A B

T0 (0,10) (0,15)
T1 (-5,10) (5,15)
T2 (15,5) (-15,20)

Table 3.3: The structure used for storing transactions during the bank test. For the multi table
method the account column is redundant as each account owns its own table.

account balance ∆

T0 A 10 0
T0 B 15 0
T1 A 10 -5
T1 B 15 5
T2 A 5 15
T2 B 20 -15

For a start, the balance of every account has to be stored. This can be achieved using several
data structures. The most straightforward structure would be storing the balances plainly in
one table, each account owning its own row in the table (see Table 3.1). However, this approach
has its disadvantages. Would anything go wrong there is no transaction history available, and
the balances are easy to tamper with.

Therefore we choose a more intricate structure. Every money transfer has a fixed set of fields,
including the amount of money that is transferred, the source and target accounts, and likely
time and date values. Table 3.2 shows a simplified representation of transactions using tuples, in
which each tuple stores a value (∆, Balance). In this example account A owns e 10 and account
B owns e 15 at T0. At T1 account A has the value (-5,5), indicating that e 5 is subtracted from
its balance, resulting in a balance of 10 − 5 = e 5. At the same time, B has the value (5,20)
indicating that 5 is added to its balance, resulting in a balance of 15 + 5 = e 20. For this to be
implemented a table is created with the columns timestamp, account, balance and ∆, shown in
Table 3.3. From this example we can see that the current balance is calculated by calculating
balance + ∆.

This table still stores all the accounts in a single table, and therefore we refer to it as the
single table method. Alternatively a multi table method is devised. With the multi table method
each account is stored in its own table. CockroachDB internally uses key ranges to distribute its
data among nodes [8]. Key ranges are always split at table level, so by storing each account in its
own table the transactions are more spread among the nodes. Due to the fact that CockroachDB
distributes the tables of the multi table method differently, this method is added as a separate
test.

As described earlier the checker at the end of the test will verify whether the test is considered
valid. Tests are considered valid if all constraints are met. For the bank test the following rules
are defined. If one of these three constraints is broken, the test is considered invalid.

Delta rule At any moment in time for each individual transaction the equation balance+∆ ≥ 0
should hold.

Balance rule At any moment in time the total balance should remain constant (no withdrawals
or deposits are possible during the tests).

Transaction history rule For every account, the last known balance should be equal to the
balance calculated using the transaction history.

The workload is defined by three distinct events: read, transfer and delete. Delete events are
added to reduce the amount of information to be processed by the framework. As tests run for
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5 minutes, they become quite data intensive. Therefore, delete events are triggered by the test,
deleting all but the last three records. This still allows the framework to run the tests on all read
events with the last three transactions for every account.

All three are fired randomly during the test every 0 > x > 0.2 seconds. An overview of the
events fired during the tests, and their frequencies, are shown in Tables 6.4, 6.6 and 6.7.

To summarise, the database is expected to adhere to the three rules defined above. Fault
injections may lead to events failing to execute, but may never lead to inconsistencies in bank
transactions.

3.2.2 Index corruption

In order to illustrate how and why indexes are used by database systems, this section will use
a music database as an example. Imagine this database stores a table with artists, as shown in
Table 3.4. In this table the birth name, artist name, birth year and place of birth are stored. As
it is a database, we can query it for specific data. We could for example query the table for all
artist that have an artist name starting with the letter D:

SELECT ar t i s t name FROM a r t i s t s
WHERE ar t i s t name LIKE ’D%’ ;

This will result in one row, namely the row of the artist “David Bowie”. For small tables this
query will be fast. However, if the tables contain millions of rows the query will become slower.
This is especially the case if queries become significantly more complex than this sample query.
SQL databases often provide extra queries that can be used to analyse efficiency, and so does
CockroachDB:

EXPLAIN SELECT ar t i s t name FROM a r t i s t s
WHERE ar t i s t name LIKE ’D%’ ;

Explain queries give more information on how the query is executed by the database system.
In this case, the system will return:

+-------+------+-------------------+

| Level | Type | Description |

+-------+------+-------------------+

| 0 | scan | artists@primary - |

+-------+------+-------------------+

The type “scan” in combination with a “-” signifies that CockroachDB will use unbounded
range for this query. When the range is unbounded, the whole table will be scanned sequentially,
which is both inefficient and time consuming for large tables [9].

This is where indexes come into play. Indexes are frequently used in databases for optimising
queries. By storing key/value pairs in a (binary) search tree a database system can quickly
locate data. We can instruct CockroachDB to create an index on the artist table by executing
the following query:

CREATE INDEX ArtistNameIdx ON a r t i s t s ( a r t i s t name ) ;

As a result, the EXPLAIN query will return a different response:

Table 3.4: Artist table in music database.

name artist name birth year place of birth

Prince Rogers Nelson Prince 1958 Minneapolis
David Robert Jones David Bowie 1947 London
Farrokh Bulsara Freddie Mercury 1946 Stone Town
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+-------+------+---------------------------------+

| Level | Type | Description |

+-------+------+---------------------------------+

| 0 | scan | artists@ArtistNameIdx /"D"-/"E" |

+-------+------+---------------------------------+

This response indicates the search space is reduced, as it is now bounded to all artists with
an artist name greater than D and smaller than E. This reduces the overall response time on
such a query [21][50].

Additionally, indexes are used for sorting data. Indexes are generally stored in a tree structure.
If the data is requested in order, it is just a matter of traversing the tree to retrieve the results
in an ordered fashion. A simplified version of how such a tree could be represented is illustrated
in Figure 3.2a. In this case, an index is placed on the column storing the year of birth. Would
the tree increase in size, it is obvious how the use of such a search tree will speed up queries in
contrast to scanning all the values in a table. Also, when doing a in-order traversal the records
will return ordered.

However, just as all other data, indexes can experience corruption. Multiple scenarios are
plausible. Firstly, one of the pointers can be manipulated. An example is shown in Figure 3.2b.
In this case, the 1947 pointer is corrupted, referring to a wrong record in the database. Would
we request all artists born in 1947 we would get “Prince Rogers Nelson” as a result. Moreover,
retrieving all data from the table would result in “Prince Rogers Nelson” being returned twice.
Secondly, the structure of the tree could get damaged, essentially resulting in a wrong order of
records (see Figure 3.2c). Finally, whole records could get lost. This is illustrated in Figure
3.2d. As a matter of fact, there are even more situations in which a index could corrupt. To
summarise, index could just as well corrupt as other data structures. That is why a workload is
devised to evaluate the influences of fault injections on indexes.

For this test a monotonic client will be used. A monotonic function is a function that remains
in order over time. A similar test is earlier defined by Cockroach Labs and will be extended to
cope with indexes [48]. The tests uses a simple table containing one value column, as shown in
Table 3.5.

The test defines events with the following code sample:

:generator (gen/phases

(->> (range)

(map (partial array-map

:type :invoke

:f :add

:value))

gen/seq

(gen/stagger 1)

(cln/with-nemesis (:generator nemesis)))

(->> {:type :invoke, :f :read-withindex, :value nil}

gen/once

gen/clients)

(->> {:type :invoke, :f :read, :value nil}

gen/once

gen/clients))

This can be explained as follows: every 0 > x > 1 seconds an add event will be emitted by
the framework. Each add event will firstly request the database for the maximum known value
in the table, increment the value by one, and insert this value to the table. For this the following
query is used:

SELECTMAX( va l ) FROM mono ;

In the end we expect each value to be unique. This tests will be executed both with and
without indexes placed on the table, as an index could also have an influence on add events of
the test. At the end of the test, two read events will be emitted. One event makes use of the
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val

0
1
2

Table 3.5: Monotonic client table.

index, the other will perform the same query without the index. This difference in index vs.
non-index is achieved by retrieving an additional “bogus” column for the non-index which is not
included in the index. These read events will retrieve all the values from the database in an
ordered fashion. If everything works as it should, it should return an incrementing list of values,
where no values are missing and everything is in order. If duplicates are detected, this could also
suggest an index corruption, as the “MAX(val)” also uses an index look up.

The checker at the end of the tests verifies the following constraints:

Duplicates The resulting read should not contain any duplicates.

Lost Lost records are those we definitely added but were not read.

Revived Revived records are those we failed to add but were read.

Recovered Recovered records are those we were not sure about and that were read.

Reorders Reordered records are those not retrieved in order.
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(a) Index tree under normal conditions.
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(b) Index tree with corrupt pointer. The corrupt pointer refers to the wrong data.
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(c) Index tree with wrong order.

1946

Farrokh Bulsara

1947 1958

Prince Rogers Nelson

(d) Index tree with missing data.

Figure 3.2: Collection of index trees for artist table with different possible failures.
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3.3 Fault injection

We use fault injection to simulate silent data corruption. This is done by flipping bits inside
the files used by the database engine. Faults need to be injected into the engine’s file system.
For this a Python script is created that will flip bits in designated files. This script accepts two
parameters: the number of bits to flip, and the file location.

Firstly, the files used by the database engine must be identified. This is done with the help
of lsof, a Linux command that lists open files. When provided with a PID (process identifier)
the lsof command returns all the open files for that particular process. By passing the PID of
the database process we are able to get the files the database engine is using at that particular
moment, and feed those file to the fault injection script. Not all files returned by lsof are useful,
so certain files are filtered. These files are files like the ‘COCKROACHDB VERSION’ file, which
does not have any influence on the functioning of the engine.

Next, the fault injection script has to come into action. As mentioned before the script
accepts the location of a file to be injected as a parameter. Furthermore the script also accepts
a second parameter which indicates how many bits have to be flipped inside that particular file.
We use various amounts of injections per experiment: 1, 2, 50 and 1000. An overview of all the
files injected by the script in both experiments is shown in Table 6.1. These files are of different
types, all with their own function.

Firstly there are SST (Static Sorted Table File) files. These are files used by RocksDB to
store the table data [14]. Secondly there are option files. Option files specify options used
by RocksDB, such as the buffer size and allocation sizes [16]. Thirdly there are manifest files
that help recover RocksDB in the event of a system failure. As file systems are not atomic, all
transactions executed by RocksDB are stored in a transactional log as a manifest file. When
the operating system or the database system crashes, this manifest log is used to restore the
database to its last known consistent state [15]. Finally there are log files, referred to as WAL
(Write Ahead Log) files. WAL files contain a serialised version of the in-memory table RocksDB
is using [17]. This WAL file is also used to recover the database to a consistent state.

When a file is chosen, the script will inject n faults using the following function:

def insert_bit_flips(file_path, n_flips):

f = io.open(file_path, ’rb+’)

file_end = f.seek(0, os.SEEK_END) - 1

for _ in range(n_flips):

# Find and read a random byte in the file

random_pos = random.randint(0, file_end)

f.seek(random_pos)

f_data = f.read(1)

# XOR this byte with a random number 0 <= x <= 7

n_data = xor(ord(f_data), 2 ** random.randint(0, 8 - 1))

# Write the modified bit

f.seek(random_pos)

f.write(chr(n_data))

f.close()

For each iteration this function seeks a random byte in the file, performs a XOR operation
and writes the result. One example of such an XOR operation is shown below, where one bit is
flipped:

1011 0010

0000 0010

------------- XOR

1011 0000
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What is reported back by the script (and logged in the experiment log) is shown below.
Where the counter indicates this is the nth injection performed so far. The script is distributed
to all nodes and is called from the master node.

{

:file_path "/home/maxgrim/cockroach-data/000003.log",

:file_bits 4608,

:injected_bits 1,

:ratio 2.17013888889E-4,

:counter 4

}

Fault injection events are called nemesis events and reported in Tables 6.3, 6.4, 6.8 and 6.9 as
“info start”. One such an event calls the Python script and is mixed with the other events in the
table. In other words, a test with 50 fault injections does not mean that 50 faults are injected
once, but every time the “info start” event is triggered, which occurs just as often as the other
events in the test.
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CHAPTER 4

Results

This chapter will describe the results. In total 976 tests are executed. The experiments are time
limited by 300 seconds. The total test duration averaged to 306 seconds. The 6 seconds overhead
is caused by initialising the experiments and collecting the results.

4.1 Banking test

Tables 4.1 and 4.2 show the number of iterations done for both the single table method and multi
table method banking tests. The number of iterations varies per test due to several reasons.
Firstly, if the connection from the master to one or multiple nodes is lost, it is impossible for the
master to download the results from the nodes. This may happen when the OS crashes, or when
other events happen that break this connection. OS crashes were never the focus of this research
and are therefore not measured, so exact reasons as to why the connection is lost are unknown.
In the framework logs several errors are reported, including closed sockets, closed streams and
connection resets. Secondly, it seems some SSH packets get corrupted. The framework is not
able to cope with these errors and aborts the connection. Finally, in some cases a deadlock
seems to occur. In this case the framework seems to the framework sometimes seems to run into
a deadlock. The reasons as to why this happened are not investigated, and solved by killing the
test after 1200 seconds, which four times the average time needed to complete a test.

Considering the test result without fault injections we can affirm the database system operates
as it should. This supports the tests previously performed by the developers at Cockroach Labs
[48]. Tables 4.1 and 4.2 mark zero invalid tests without fault injections. Moreover, panics
measured during the tests were not existent for these tests (Figure 4.4). Panics are cases where
the database system on a node crashes.

These tests seem valid, yet transfers still fail. Tables 6.3 and 6.4 show failure rates of 11.1%
for the single table method and 13.5% for the multi table method. This is also illustrated in
Figures 4.1 and 4.2a. Transfers are randomly generated by the framework. In the case a transfer
would result in a negative balance, the transfer is also marked as a failure. While marked as
failure, we are not interested in these types of failures. Inspecting Figure 4.3 confirms 100% of

injections tests total length (s) invalid

0 59 17999 0
1 27 8230 0
2 22 6703 0
50 14 4270 0
1000 31 9888 0

Table 4.1: Bank test with the single table
method.

injections tests total length (s) invalid

0 62 18904 0
1 45 13743 0
2 25 7635 1
50 14 4693 0
1000 33 10120 1

Table 4.2: Bank test with the multi table
method.
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Figure 4.1: Transfer events.

the transfer failure rates for both single- and multi table methods are caused by transactions
that would otherwise result in a negative balance. Therefore the tests without fault injections
are considered successful.

Interestingly, when looking at the failures rates for multi table tests with fault injections, we
do not see an increase in failed transfers (Figure 4.1b and Table 6.4). In contrast, the transfer
failure rate for the single table method does seem to increase initially (Figure 4.1a and Table
6.3). Furthermore, we observe a shift in the reason as to why these transfers fail. Figure 4.3
shows increasing reports of checksum errors or even database losses under fault injections. Where
with zero injections all failures are caused by a resulting negative balance, checksum failures are
present in all other experiments. It is unclear why the number of checksum failures is particularly
high with 50 injections. We also see the changes of a lost database increase with the number of
injections. In some cases CockroachDB reports that either the “system” or “jepsen” (which is
the test database) do not exist. This indicates the database and/or the pointers to it are that
corrupted that the engine can not find them anymore. We would expect some sort of corruption
warning here as well, as this is not apparent.

Additionally the number of unsure transfers increases as more faults are injected. Transfers
are marked unsure if no apparent error is returned by the server. There are various reasons for
unsure transfers, including timeout, a closed connection or an I/O error. Timeouts that do occur
can be caused by the server being confused or even crashed under fault injections. Measured
over all banking tests the reasons of unsure transactions are shown in Table 6.5.

Not only transfer but also read events fail. Read events request the transactions for every
account from the database. While without fault injections 0% fails, this increases with the
number of fault injections for both single table and multi table methods (see Figure 4.2b). In
the case a read event fails, we can not determine the balance of an account anymore. Clearly
these failure rates are significantly higher for the single table method. In other words, the read
reliability is higher for tests using the multi table method.

To begin with, it is positive that CockroachDB does prevent returning corrupt data by report-
ing a checksum mismatch. However, this means that the client is unable to determine the balance.
Consequently the application has “lost” the balance for the account. By default CockroachDB
stores three replicas of its data distributed over nodes. In the event all three replicas are damaged
it would be unavoidable for the database to not return any data. Yet, when one or two replicas
are damaged the database should still be able to return the balance using the unharmed replica.
However, read failures still occur relatively often when only injecting into N3 (see Tables 6.7 and
6.6). This indicates CockroachDB does not perform this kind of repairs yet.

When considering errors they can be divided into two types: server errors and client errors.
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Figure 4.2: Transfer and read failure rates for bank tests using the single- and multi table method.
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Figure 4.3: Bank test transfer failures categorised by reason.
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injections tests total test length (s) invalid

1 43 13116 0
2 41 12507 0
50 44 13415 0
1000 41 12497 0

Table 4.3: Bank test with the single table
method, where faults are only injected on N3.

injections tests total length (s) invalid

1 42 12808 0
2 41 12501 0
50 40 12193 0
1000 42 12800 0

Table 4.4: Bank test with the multi table
method, where faults are only detected on N3.

Server errors are written in an error file by the database system on the nodes. These logs are
collected at the end of the experiment for analysis. Examples of server errors are checksum
mismatches during internal replication or other forms of communication not visible by the client.
On the other hand, client errors are collected by the framework during the execution of queries.
Examples of client errors are the failed read and transfer events mentioned before. Server errors
and client errors are visualised in Figure 4.5. Client errors generally occur more frequent than
server errors. Furthermore client errors tend to increase with the amount of fault injections
except with 1000 fault injections. As 1000 fault injections is huge amount, probably other errors
arise earlier, all in all lowering the amount of client errors.

As noted before, the bank tests are also executed with fault injections only performed on
node N3. Tables 4.3 and 4.4 show these tests had zero invalid tests. The number of iterations
for each test varies less compared to tests injecting on all nodes. This indicates these tests are
more stable. Moreover, on average less server- and client errors occur in tests where faults are
only injected in node N3 (Figure 4.5).

4.1.1 Invalid tests

Two tests were marked as failed by the checker. Both these tests used the multi table method,
and during the test faults were injected on all nodes (see Table 4.2). To put it in numbers, 0.3%
of the total 666 tests returned a failure. If we only consider tests using the multi table method,
the invalid percentage rises to 1.12%. The results of both these experiments are shown in sections
6.1 and 6.2.

As stated before, a test is considered invalid in case one of the constraints is not met. In
the first invalid test, shown in section 6.1, the total balance is not constant over time. While
the balance starts at e 225, the final balance is e 221. So e 4 is lost in the process, while the
delta check seems to be fine. Over time, the total balance takes the values e 225, e 229, e 221,
and e 230. Note that for this test the transaction records were not logged, as this is only added
during later executed tests. Because of these missing records we can only speculate as to why
this total balance varies. Nonetheless we can conclude that these balance inconsistencies are
caused by the data corruption and should not be visible to the client.

The second failed tests however did log the transactional records during the test. These
results are shown in section 6.2. Same as with the first failed test the balance was not constant
over time. In this case, the starting balance of e 225 spikes to a whopping e 9007199254741217.
This is where probably a high order bit in the 64-bit integer is flipped without the database
noticing. We can exemplify this with the help of the transaction details shown in section 6.2.1.
Using the tuple representation introduced in Chapter 3 we can show the last three transactions
performed on account 0:

T68 (2, 22) = 24

T79 (-5, 24) = 19

T114 (-4, 9007199254741011) = 9007199254741007
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Figure 4.4: Panics measured during bank test experiments. All nodes have the possibility to
panic. In these measurements, if one of the five nodes crashes with a panic, this is counted as
one panic for that particular test. Next, all panics for all experiments are counted and normalised,
resulting in the graph above. For example, in the case of 50 injections there is a panic rate of
100%. This does not necessarily means that all nodes have paniced, but that in every experiment
at least one node has paniced.
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Figure 4.5: Server and client errors encountered during the bank tests.
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This implies somewhere between T79 and T114 a data corruption modified the balance field.
The enormous increase in the balance value can be justified by flipping a high order bit in the
64-bit signed integer value stored in the database system:

19 =

...0000000000000000000000000000000000000000000000000000010011

9007199254741011 =

...0000100000000000000000000000000000000000000000000000010011

After this corruption has taken place the balance restores to its original value of e 225 at the
following read, as can be seen in section 6.2. However, even further down the line, the balance
seems to suffer from a second corruption, this time rising the total balance to e 2097377 twice
in time.

One of the possible explanations for the first balance recovery is that the corrupted node con-
taining the high value e 9007199254741217 crashes, with another node thereafter taking action
into showing the total balance, restoring it back to its original value of e 225.

4.2 Index test

The number of index tests using the monotonic function is shown in tables 4.5 and 4.6. The num-
ber of tests varies less than with banking tests, suggesting the tests are more stable. Furthermore
the amount of invalid tests is much higher compared to the bank tests.

As described in the methodology section the index test only emits two read events at the end
of the test, one with the index used and one without. Would this final read for some reason fail,
the checker can not verify whether the test is valid. This explains why the invalid rate is much
higher for these tests. Tables 6.8 and 6.9 do confirm this, as read failures match the number of
invalid tests. In a few cases this does not hold, these are discussed later in this section.

The reasons as to why reads fail are shown in Figures 4.9 and 4.10. This indicates there is a
higher chance of checksum mismatches when indexes are not in place.

Considering the test result without fault injections we can for this test also conclude the
database system operates as it should. There are no panics detected (see Figure 4.6). Further-
more no client errors were observed (see Figure 4.7 and Tables 6.8 / 6.9). On average two server
errors were monitored during the tests. On closer inspection these errors should be interpreted
as warnings instead of errors, and were not relevant to our research.

During the tests one case is detected where there are inconsistencies between the read using
an index and the read not using an index, specifically the value of “fail read-withindex” in Table
6.8 is equal 12 where “fail read” is equal to 13. This indicates that the read using the index
did succeed while the one without failed. What is interesting though is another type of error,
found in an index vs. no index test. One test executed with 50 bit flips indicated a failure of the
non-index read, whilst the index read did succeed. This indicates the table data is corrupted,
but when the index is used the data is returned fine. You could turn this around and say, when
the index is corrupt, the data used by the client coming form the index might thereafter corrupt
the actual table data, which is obviously bad.

Figure 4.8 indicates the number of adds is relatively lower compared to bank tests. This
is probably due to the fact that less data is used for add operations, lowering the odds of
encountering corrupted data. Just as with the bank tests also the number of unsure responses
increases with the number of fault injections.
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injections tests total length (s) invalid

0 47 14285 0
1 43 13084 30
50 26 7917 21
1000 25 7612 16

Table 4.5: Monotonic tests with an index in
place.

injections tests total length (s) invalid

0 51 15669 0
1 44 13532 4
50 43 13280 14
1000 31 9552 14

Table 4.6: Monotonic tests without an index
in place.
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Figure 4.6: Panics measured during index corruption experiments. All nodes have the possibility
to panic. In these measurements, if one of the five nodes crashes with a panic, this is counted as
one panic for that particular test. Next, all panics for all experiments are counted and normalised,
resulting in the graph above.

4.2.1 Invalid tests

In this phase we found an error in the framework. The results indicated “revived” errors, while
they actually were false positives. Take for example this output, taken from the monotonic test
without indexes with 50 bit flips:

232843795233 7 :invoke :add 1089

232848348646 7 :fail :add 1089

PSQLException: ERROR: database "system" does not exist

237094759706 9 :ok :add (1089 14649134603444570640000000000N 1)

272108902530 13 :invoke :add 1291

Values are marked as revived by the framework if the value failed to add yet later were read by
the client. In the example output above, the add is firstly marked as failed, but later still marked
as successful. This makes the framework believe the value was not added, while it actually was.

Furthermore, no faults were found with the reorder test, implying that none of the data
corruptions led to a wrong order in the tree traversals.
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Figure 4.7: Server and client errors encountered during the index corruption tests.
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Figure 4.10: Reason for failed reads with indexes in place.
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CHAPTER 5

Conclusion

We as humans collect more data every year. Databases are often used for storing important data,
and they rely on storage systems functioning properly. However, data corruptions do occur and
are caused by a variety of reasons [2][23]. Storage systems are expected to report errors in the
event data corruptions occur, but not all corruptions are detected. Lot of effort has been put
into preventing these problems, and because of these efforts the chances of data corruptions have
been reduced [33]. Yet, it is still possible for these silent data corruptions to occur, and there is
little research on the effects of these silent data corruptions on database systems.

Databases promise to be robust, highly consistent, fault-tolerant, survivable and durable.
Although this sounds promising, these claims are all based upon the assumption that storage
systems are fault free. Scientific research of these claims in combination with (simulated) data
corruptions is sparse. In the hope of setting a stepping stone towards new research on database
robustness, this project extended an existing database testing framework called Jepsen with
functionality simulating silent data corruptions. The database system tested by this project is
CockroachDB, though with some effort it is possible to use the framework for other databases as
well. CockroachDB is an open-source lock-free distributed SQL database and currently in beta
stage.

To test the distributed database a test environment is used consisting of five node instances
and a master instance. The five nodes are used for a CockroachDB cluster whereas the the
master node is used for controlling the experiments. Two workloads are devised, one simulating
money transfers inside a bank, and another simulating a monotonic function. The framework
runs these experiments with different parameters and analyses the consequences of simulated
data corruptions.

Analysing these results we can confirm that, as promised, under normal conditions the
CockroachDB engine functions properly. During the tests executed no inconsistencies were en-
countered, the system did not panic, and no client errors were reported.

Moreover, CockroachDB does detect corruptions in its file system with the help of checksum
techniques. Under fault injection the client often reported checksum mismatches, which prevent
the client from observing invalid data. Results indicated significant difference between the single-
and multi table methods used for the bank test, indicating users should take their data structures
into consideration when designing an application.

Panics were observed relatively often during the experiments, but because the rate of simu-
lated fault injections in these experiments was relatively high, we can not blame the database
engine to crash.

However, we observed two cases where the tests resulted in serious inconsistencies. In both
tests the sum of all balances varied through the experiment while this should remain constant
at all times. Where in one experiment e 4 was lost, the other experiment showed an enormous
temporary increase in the balance of one account.

Additionally, the test result indicated that CockroachDB does not use its stored replicas for
recovery in case of an detected data corruption. This is unfortunate, as this implies corrupted
data is lost inevitably, while the data might still be valid in the stored replicas. CockroachDB
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uses replication for availability but not yet for error recovery.
The work in this thesis was performed on a database system still in beta stage, and it is

therefore remarkable that this database engine was significantly reliable in the presence of silent
data corruptions despite its relatively young age. Meanwhile, the methodology presented in this
thesis is relatively independent from the specific database engine as it is based on SQL, and could
thus readily be extended to other relational database management systems.

5.1 Discussion

The experiments done in this project inject many faults simultaneously, way more than usually
would occur in natural situations. Therefore we can not blame the database engine to crash
relatively often under these conditions, as in ordinary situations this rate of data corruption
would not occur. Nevertheless we have chosen to do so, as flipping bits in the order of one
bit every week would be too slow for testing. If we’d chosen a lower rate of errors the odds
of encountering an error lower drastically. Therefore the simulated fault injections have been
speed up to quickly produce results. Despite the high rate of fault injections, this still illustrates
that a bit flip at the right time and place could lead to severe inconsistencies in the database.
Therefore database developers should not blindly trust the data received from the storage system
and verify all data received.

5.2 Future work

To start with, this framework can be extended to test other database engines as well. In these
tests additional workloads could be defined that test other interesting properties of the en-
gine. Furthermore, steps could be taken into analysing the probability distribution of database
system inconsistencies under increasing simulated fault injection, rather than the deterministic
approach.
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CHAPTER 6

Appendix

6.1 Failed test 1

{:perf {:valid? true},

:details

{:valid? false,

:start-balance 225,

:end-balance 221,

:valid-balances false,

:bad-deltas (),

:test-length (600),

:balances (225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225,

...

225, 225, 225, 225, 225, 225, 225, 225, 229, 225, 225, 225, 225, 225,

225, 225, 225, 229, 225, 225, 221, 221, 221, 225, 225, 221, 230, 230,

230, 230, 230, 230, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221,

221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221,

221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221,

221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221,

221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221,

...

221)

} :valid? false}
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6.2 Failed test 2

{:perf

{:latency-graph {:valid? true},

:rate-graph {:valid? true},

:valid? true},

:details

{:valid-balances false,

:valid-account-transaction-info false,

:valid? false,

:start-balance 225,

:bad-deltas (),

:valid-bad-deltas true,

:test-length 300,

:bad-balances

(225

....

9007199254741217

225

225

225

2097377

225

225

2097377

225

...

225),

:bad-account-transaction-info (...),

:valid? false}
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6.2.1 Transaction details

{:account 12, :delta 2097151,

:last-balance 39, :first-balance 2097190,

:account-transactions

({:account 12,: logicaltime 1463948026732284106,

:timestamp 132, :balance 36,

:delta 2097154}

{:account 12, :logicaltime 1463948026732284106,

:timestamp 126, :balance 39,

:delta -3}

{:account 12, :logicaltime 1463948026732284106,

:timestamp 121, :balance 41,

:delta -2})}

{:account 9, :delta 2097154,

:last-balance 4, :first-balance 2097158,

:account-transactions

({:account 9, :logicaltime 1463948029469462306,

:timestamp 128, :balance 5,

:delta 2097153}

{:account 9, :logicaltime 1463948029469462306,

:timestamp 119, :balance 4,

:delta 1}

{:account 9, :logicaltime 1463948029469462306,

:timestamp 77, :balance 0,

:delta 4})}

{:account 0, :delta -9,

:last-balance 24, :first-balance 9007199254741007,

:account-transactions

({:account 0, :logicaltime 1463948024660475877,

:timestamp 114, :balance 9007199254741011,

:delta -4}

{:account 0, :logicaltime 1463948024660475877,

:timestamp 79, :balance 24,

:delta -5}

{:account 0, :logicaltime 1463948024660475877,

:timestamp 68, :balance 22,

:delta 2})}
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file injections

OPTIONS-000005 328999
000003.log 255220
MANIFEST-000001 254546
000006.log 104112
MANIFEST-000009 40376
000008.sst 40163
000007.log 39081
OPTIONS-000008 33843
MANIFEST-000005 33722
000004.sst 32576
000010.log 6610
000009.log 5880
000012.sst 3549
000011.log 1429
000013.sst 1284
000011.sst 1062
000013.log 34
000009.dbtmp 1

Table 6.1: Fault injections per file name.

filetype injections percentage

log 412366 34.8728%
options 362842 30.6847%
manifest 328644 27.7926%
sst 78634 6.6499%
dbtmp 1 0.0001%

Table 6.2: Fault injections per filetype.
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Table 6.3: Events triggered in bank tests using the single table method.

0 injections 1 injection 2 injections 50 injections 1000 injections

type total events/s total events/s total events/s total events/s total events/s

fail delete 0 0 2859 0.347 3204 0.478 2804 0.657 5504 0.557
fail read 0 0 2982 0.362 3232 0.482 2836 0.664 5692 0.576
fail transfer 3063 0.170 4190 0.509 4179 0.623 3360 0.787 7149 0.723
info delete 827 0.046 2838 0.345 2166 0.323 2622 0.614 5989 0.606
info read 890 0.049 2679 0.326 2291 0.342 2609 0.611 6188 0.626
info start 0 0 24402 2.965 19550 2.916 12552 2.939 25460 2.575
info transfer 4158 0.231 4245 0.516 3295 0.492 3216 0.753 7182 0.726
invoke delete 27419 1.523 16443 1.998 13838 2.064 10229 2.395 21940 2.219
invoke read 27312 1.517 16611 2.018 13877 2.070 10287 2.409 22314 2.257
invoke transfer 27471 1.526 16435 1.997 13723 2.047 10255 2.402 22578 2.283
ok delete 26592 1.477 10746 1.306 8468 1.263 4803 1.125 10447 1.056
ok read 26422 1.468 10950 1.331 8354 1.246 4842 1.134 10434 1.055
ok transfer 20250 1.125 8000 0.972 6249 0.932 3679 0.862 8247 0.834
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Table 6.4: Events triggered in bank tests using the multi table method.

0 injections 1 injection 2 injections 50 injections 1000 injections

type total events/s total events/s total events/s total events/s total events/s

fail delete 0 0 308 0.022 657 0.090 713 0.152 715 0.071
fail read 0 0 300 0.022 630 0.086 685 0.146 751 0.074
fail transfer 6180 0.327 3910 0.285 2222 0.303 1185 0.252 2563 0.253
info delete 292 0.015 4164 0.303 2318 0.316 3295 0.702 11355 1.122
info read 750 0.040 4754 0.346 2358 0.321 3376 0.719 11612 1.147
info start 0 0 35192 2.560 20036 2.732 12144 2.587 27338 2.701
info transfer 84 0.004 3761 0.274 2003 0.273 3145 0.670 10732 1.060
invoke delete 45392 2.401 32307 2.351 18360 2.503 11704 2.494 28262 2.793
invoke read 45594 2.412 32849 2.390 17912 2.442 11575 2.466 28481 2.814
invoke transfer 45820 2.424 32454 2.361 17970 2.450 11403 2.430 28098 2.777
ok delete 45100 2.386 27835 2.025 15385 2.098 7696 1.640 16192 1.600
ok read 44844 2.372 27795 2.022 14924 2.035 7514 1.601 16118 1.593
ok transfer 39556 2.092 24783 1.803 13745 1.874 7073 1.507 14803 1.463
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Percentage Type

74.437% Connection closed
25.368% Timeout
0.105% I/O error sending backend
0.037% Unknown reason
0.021% Socket closed
0.009% Server is not accepting clients
0.008% Connection reset
0.006% Connection refused
0.005% Database “system” does not exist
0.002% Checksum mismatch
0.001% Context deadline exceeded
0.001% Stream closed

Table 6.5: Reasons for unsure transfers in banking tests.

Table 6.6: Events triggered in bank tests using the multi table method, only injecting on node
N3.

1 injection 2 injections 50 injections 1000 injections

type total events/s total events/s total events/s total events/s

fail delete 172 0.0134 72 0.006 16 0.001 253 0.020
fail read 123 0.010 76 0.006 26 0.002 173 0.014
fail transfer 4082 0.319 3902 0.312 3835 0.315 4055 0.317
info delete 748 0.0584 726 0.058 2340 0.192 3258 0.255
info read 951 0.074 823 0.066 2608 0.214 3631 0.284
info start 75258 5.876 73778 5.902 71902 5.897 76140 5.948
info transfer 512 0.040 417 0.033 2103 0.172 3208 0.251
invoke delete 31207 2.436 30579 2.446 31196 2.559 32907 2.571
invoke read 31161 2.433 30838 2.467 31321 2.569 33542 2.620
invoke transfer 31772 2.481 30628 2.450 31536 2.587 33765 2.638
ok delete 30287 2.365 29781 2.382 28840 2.365 29396 2.297
ok read 30087 2.349 29939 2.395 28687 2.353 29738 2.323
ok transfer 27178 2.122 26309 2.105 25598 2.099 26502 2.070

Table 6.7: Events triggered in bank tests using the single table method, only injecting on node
N3.

1 injection 2 injections 50 injections 1000 injections

type total events/s total events/s total events/s total events/s

fail delete 601 0.046 473 0.0378 1083 0.081 474 0.0379
fail read 643 0.049 442 0.035 1030 0.0768 499 0.040
fail transfer 3053 0.233 2732 0.218 3418 0.255 2842 0.227
info delete 2940 0.224 1593 0.127 5108 0.381 3083 0.247
info read 2924 0.223 1529 0.122 5087 0.379 3115 0.249
info start 79742 6.080 76274 6.099 83250 6.206 77084 6.168
info transfer 5425 0.414 3882 0.310 7342 0.547 5310 0.425
invoke delete 22809 1.739 21158 1.692 25837 1.926 22453 1.797
invoke read 22928 1.748 20683 1.654 25939 1.934 22898 1.832
invoke transfer 22999 1.754 20541 1.642 26237 1.956 22444 1.796
ok delete 19268 1.469 19092 1.527 19646 1.464 18896 1.512
ok read 19361 1.476 18712 1.496 19822 1.478 19284 1.543
ok transfer 14521 1.107 13927 1.114 15477 1.154 14292 1.144
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Table 6.8: Events triggered in the monotonic tests using indexes.

0 injections 1 injection 50 injections 1000 injections

type total events/s total events/s total events/s total events/s

fail add 0 0 1314 0.097 1940 0.146 926 0.097
fail read 0 0 4 0.001 13 0.001 13 0.001
fail read-withindex 0 0 4 0.000 12 0.001 13 0.001
info add 2182 0.139 2085 0.154 3704 0.279 4032 0.422
info start 0 0 43844 3.240 42166 3.175 30796 3.224
invoke add 63477 4.051 53469 3.951 52421 3.948 37885 3.966
invoke read 51 0.003 44 0.003 43 0.003 31 0.003
invoke read-withindex 51 0.003 44 0.003 43 0.003 31 0.003
ok add 61295 3.912 50070 3.700 46777 3.522 32927 3.447
ok read 51 0.003 40 0.003 30 0.002 18 0.002
ok read-withindex 51 0.003 40 0.003 31 0.002 18 0.002

Table 6.9: Events triggered in the monotonic tests without indexes.

0 injections 1 injection 50 injections 1000 injections

type total events/s total events/s total events/s total events/s

fail add 0 0 0 0 503 0.064 719 0.095
fail read 0 0 30 0.002 20 0.003 16 0.002
info add 1303 0.091 1502 0.115 1663 0.210 1938 0.255
info start 0 0 43084 3.293 26016 3.286 25124 3.300
invoke add 66036 4.623 59946 4.582 36385 4.596 34877 4.582
invoke read 47 0.003 43 0.00 26 0.003 25 0.003
ok add 64733 4.532 58444 4.467 34219 4.322 32220 4.233
ok read 47 0.003 13 0.001 6 0.001 9 0.001
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