
Bachelor Informatica

Multi-modal Visualization of
Resource Consumption in Com-
puter Systems

David van Erkelens

July 2, 2014

Supervisor(s): Raphael Poss (UvA)

Signed:

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Abstract

Resource consumption in computer systems can be a very obscure aspect of an operating
system. However, the consumption of resources can have a huge influence on the performance
of the system. Therefore, it is useful for an user to gain insight in the resource consumption
of processes running on its system and become able to control the consumption of resources.
In this thesis, the development of an extensible framework to visualize, monitor and actuate
constraints on the resource consumption of groups of processes on recent Linux systems will
be discussed. The framework will use /proc for the monitoring of the resource consumption
and cgroups to place limits on the resource consumption of groups of processes. Using these
tools, the user can be provided with a high level visualization and management of resource
consumption.

3

Contents

1 Introduction 6

1.1 Existing task managers . 6

1.1.1 ps . 7

1.1.2 top . 7

1.1.3 htop . 8

2 Theoretical background 10

2.1 Monitoring system resources . 10

2.1.1 System wide monitoring . 10

2.1.2 Per-process monitoring . 11

2.2 Grouping and limiting system resources . 12

2.2.1 cgroups . 12

2.2.2 Grouping tasks . 13

2.2.3 Limiting resource consumption . 13

2.3 Summary . 13

3 Framework Design 15

3.1 Back end . 15

3.1.1 Monitor agent . 15

3.1.2 Actuator agent . 15

3.2 Front end . 16

3.3 Communication . 16

3.3.1 Protocol . 17

3.4 Summary . 18

4 Implementation 19

4.1 Developing the back end . 19

4.1.1 Monitor agent . 19

4.1.2 Actuator agent . 20

4.2 Developing the front end . 21

4.2.1 Desktop . 21

4.2.2 Android . 22

4.3 Summary . 24

5 Experiments 25

5.1 System wide monitoring . 25

5.2 Group monitoring . 25

5.3 Resource limiting . 25

5.4 Working with Android . 25

5.5 Summary . 26

4

6 Conclusions 27
6.1 Limitations of the framework . 27
6.2 Future development . 27

6.2.1 Extending the front end . 27
6.2.2 Extending the back end . 28

6.3 Conclusion . 28

Bibliography 29

Appendices 30

A Usage 31
A.1 Dependencies . 31
A.2 Compiling and running . 31

B Extending the framework 32
B.1 Extending the back end . 32

B.1.1 Monitor agent . 32
B.1.2 Actuator agent . 32

B.2 Extending the front end . 33
B.2.1 Desktop version . 33
B.2.2 Android version . 34

C Screenshots 35
C.1 Desktop front end . 35
C.2 Android front end . 38

5

CHAPTER 1

Introduction

Today’s computer systems are highly capable of multi-tasking. However, due to the closed na-
ture of a computer, it can be hard for an user to understand which process is consuming a lot
of resources. However, it is important for an user to understand which process is consuming a
lot of power of the system, since limiting this process can improve the performance or increase
the battery duration of the system. It is therefore useful to develop a tool which shows the user
how many resources a process or a group of processes is consuming. Since computer systems
know a wide range of different operating systems nowadays, it has been decided to narrow the
subject and develop this tool for the latest versions of Linux (versions with a kernel version past
2.6.24 [5]), since they support cgroups. cgroups is a relatively new function in the Linux kernel,
and is not widely used yet. However, due to the fact that cgroups provides an option to limit
resource consumption on a group basis instead of a process basis, it grands a new perspective on
resource management.

The main question answered in this thesis is: How can modern Linux features be used to provide
an user with high level visualization and management of resource consumption?

In order to be able to answer this question, several sub questions have to be answered first:

• Which tools are available in Linux to monitor and actuate resource consumption?

• Which resources can be controlled with these tools?

• Which resources are useful to control?

• How can this information be visualized for the user?

Answering these questions will provide a framework for a tool to control the resources of a
system. While answering these questions, an extensible framework is discussed. The goal of
this framework is to provide the user with a basic, extensible interface to visualize, monitor and
limit resource consumption on a Linux computer using multiple front ends, providing support
for groups of processes. This framework should be capable of automatically generating groups
of processes, so the user can define its own groups to manage without building the groups every
time the framework boots.

1.1 Existing task managers

In this section, several existing task managers for Linux will be discussed. The differences between
these task managers and the framework developed, will be discussed in section 6.3.

6

1.1.1 ps

ps is a command in UNIX based system which gives a snapshot of current processes [6]. ps is
short for process status and uses /proc to retrieve the information about running processes.
When run with the aux options, to list processes for all users, including processes without a
controlling terminal and adding a column for the user running the process, ps returns data
formatted as following:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 4056 1844 ? Ss 00:08 0:05 /sbin/init

root 2 0.0 0.0 0 0 ? S 00:08 0:00 [kthreadd]

root 3 0.1 0.0 0 0 ? S 00:08 0:34 [ksoftirqd/0]

root 4 0.1 0.0 0 0 ? S 00:08 0:30 [kworker/0:0]

root 5 0.0 0.0 0 0 ? S< 00:08 0:00 [kworker/0:0H]

root 7 0.0 0.0 0 0 ? S 00:08 0:00 [migration/0]

root 8 0.0 0.0 0 0 ? S 00:08 0:00 [rcu_bh]

root 9 0.1 0.0 0 0 ? S 00:08 0:24 [rcu_sched]

root 10 0.0 0.0 0 0 ? S 00:08 0:02 [watchdog/0]

[...]

david 7099 0.0 0.1 6488 2888 pts/7 Ss+ 04:54 0:00 bash

root 8712 0.0 0.0 0 0 ? S 05:12 0:00 [kworker/u2:2]

root 11437 0.0 0.0 0 0 ? S< 05:22 0:00 [kworker/u3:1]

david 11476 0.0 0.0 5244 1152 pts/0 R+ 05:26 0:00 ps aux

ps only provides a snapshot of the system, and no repetitive update of the resource consumption.
The columns in ps note the following properties of the processes:

• USER: The user name of the owner of the process

• PID: The ID of the process

• %CPU: The percentual load of the process on the CPU

• %MEM: The percentual load of the process on the RSS

• VSZ: The amount of virtual memory used, in kilobytes

• RSS: The amount of physical memory used, in kilobytes

• TTY: The controlling terminal of the process

• STAT: The state of the process, consisting of one of the following values:

– D: Uninterruptible sleep, usually waiting for I/O

– R: Running

– S: Interruptible sleep

– T: Stopped

– Z: Zombie process

• START: The starting time or date of the process

• TIME: The time the process spent on the CPU

• COMMAND: The first 8 bytes of the base name of the process’s executable file

7

1.1.2 top

top provides an interactive look at the processes currently running on the system [8]. The
processes are sorted on CPU usage by default, but can also be sorted on memory usage and
runtime. Contrary to ps, top continously updates the data instead of providing a snapshot.
Besides that, top also provides system wide monitoring data and basic options to actuate resource
consumption, like being able to kill or nice processes. top gets its data from the /proc filesystem.
top outputs data formatted as following:

top - 17:45:44 up 7:37, 4 users, load average: 0,32, 0,50, 0,50

Tasks: 161 total, 1 running, 160 sleeping, 0 stopped, 0 zombie

%Cpu(s): 3,5 us, 12,8 sy, 0,0 ni, 83,4 id, 0,0 wa, 0,0 hi, 0,3 si, 0,0 st

KiB Mem: 2064648 total, 1865144 used, 199504 free, 208744 buffers

KiB Swap: 3426300 total, 90404 used, 3335896 free, 775324 cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1358 root 20 0 213m 117m 71m S 4,9 5,8 25:34.32 Xorg

6521 david 20 0 325m 120m 28m S 3,0 6,0 4:44.40 chrome

1588 david 20 0 293m 8804 5716 S 2,6 0,4 0:27.97 gnome-terminal

6315 david 20 0 763m 111m 42m S 2,3 5,5 11:53.60 chrome

12280 david 20 0 5224 1292 936 R 1,3 0,1 0:00.26 top

The columns in top note the following properties of the processes:

• PID: The ID of the process

• USER: The user name of the owner of the process

• PR: The priority of the process

• NI: The nice value of the process. Negative nice values indicate a higher priority.

• VIRT: The amount of virtual memory used

• RES: The amount of physical memory used

• SHR: The amount of shared memory used

• S: The state of the process

• %CPU: The percentual load of the process on the CPU

• %MEM: The percentual load of the process on the RSS

• TIME+: The time the process spent on the CPU

• COMMAND: The command used to launch the process

1.1.3 htop

htop is an interactive system monitor and process viewer [11]. It is designed as an alternative to
top, and shares a lot of features with top. htop is graphically more enhanched than top: htop

supports mouse operations, vertical and horizontal scroll which allows all processes to be viewed
and displaying basic graphs of CPU, RSS and swap usage. htop also supports basic actuation
of resource consumption, by being able to kill or nice processes. Like ps and top, htop also gets
its data by reading from the /proc filesystem. htop outputs data formatted as following:

CPU[||||||||||||||| 31.8%] Tasks: 112, 237 thr; 1 running

Mem[||||||||||||||||||||||||||||||||||||868/2016MB] Load average: 0.66 0.59 0.54

Swp[|| 87/3345MB] Uptime: 07:42:54

8

PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command

523 avahi 20 0 3492 1000 888 S 0.0 0.0 0:00.45 avahi-daemon: running

524 avahi 20 0 3492 148 132 S 0.0 0.0 0:00.00 avahi-daemon: chroot helper

12770 david 20 0 5760 2052 1292 R 5.8 0.1 0:02.14 htop

7094 david 20 0 290M 15376 11888 S 8.2 0.7 0:04.29 gnome-terminal

6521 david 20 0 325M 121M 28984 S 2.2 6.0 4:51.75 /opt/google/chrome/chrome

6351 david 20 0 763M 108M 43880 S 0.0 5.4 0:33.02 /usr/bin/google-chrome-stable

6380 david 20 0 253M 45992 19972 S 0.5 2.2 0:59.31 /opt/google/chrome/chrome

1627 david 20 0 325M 12064 7640 S 0.3 0.6 0:06.36 synapse --startup

3661 david 20 0 31696 1196 888 S 0.3 0.1 0:25.67 adb -P 5037

6345 david 20 0 763M 108M 43880 S 0.8 5.4 2:52.95 /usr/bin/google-chrome

6525 david 20 0 325M 121M 28984 S 0.3 6.0 0:20.75 /opt/google/chrome

1956 david 20 0 561M 170M 42568 S 0.5 8.5 34:40.25 /opt/sublime_text

1404 david 20 0 5496 1184 916 S 0.0 0.1 0:01.72 init --user

The values indicated in the columns in htop are equal to the columns of top. The three task
managers discussed in this section have in common that the visualization is based upon separate
processes. If an application is implemented to utilize multiple processes, it becomes very hard
to determine the resource consumption of the entire application. An example of an application
which uses multiple processes is Google Chrome, which uses a separate process for each tab
opened. To monitor this kind of applications, the user needs support to visualize groups of
processes. Therefore, this will be implemented in the framework discussed in this thesis.

9

CHAPTER 2

Theoretical background

In this chapter, the theoretical background behind measuring and limiting resource consumption
will be discussed.

All three major operating systems (Windows, OS X and Linux) have options to monitor and
control resource consumption. Windows has a class named Win32_Process via which informa-
tion about processes can be retrieved and limits can be set [10]. OS X has the sysctl function
to get and set process and kernel information, and monitor and limit resource consumption [2].
In the Linux kernel, information about the kernel can be accessed and controlled using so-called
pseudo- and virtual file systems. These file systems do not contain any actual files, but can be
read like they do. When information is written to these files, it is applied to the kernel and
serious harm can be done to the stability of the system. These file systems are very powerful,
but should be used with caution.

Linux is the only operating system out of the three to provide cgroups [5], a feature which
allows an user to limit resource consumption for groups instead of separate processes. Since this
is a feature desired for the framework discussed in this thesis, it has been decided to develop the
framework for Linux.

2.1 Monitoring system resources

To monitor the usage of system resources of processes, the pseudo-file system procfs is used.
This filesystem is mounted at /proc and contains statistics about every process running on the
system, as well as information about the total resources consumption of the system [4].

2.1.1 System wide monitoring

To monitor the system wide consumption of resources, the files mounted directly under /proc

have to be used.

Monitoring CPU usage

In order to monitor the usage of the CPU, the file /proc/stat has to be opened. This file
contains the following lines:

cpu 21407 3703 67249 217109 3581 0 1123 0 0 0

cpu0 21407 3703 67249 217109 3581 0 1123 0 0 0

intr 545139 221 10400 0 0 0 0 0 0 0 31706 14482 [..]

ctxt 1730199

btime 1401948542

processes 3076

10

procs_running 2

procs_blocked 0

softirq 393491 0 244927 655 18266 30202 0 9786 0 546 89109

The values noted behind cpu are the required values to calculate the CPU usage. The files
starting with cpuX note the usage of the different cores of the CPU, the cpu line contains the
accumulated values of all these lines. The first four values are the values required to calculate
the consumption of CPU time. Since the cpu line is used in the calculations, the average load
of all cores in the system is calculated. These values note the amount of time in jiffies1 that the
system spend in various states:

• user - Time spend in user mode

• nice - Time spend in user mode with low priority

• system - Time spent in system mode

• idle - Time spent in the idle mode

The total percentage of CPU usage can then be calculated using:

user + nice + system

user + nice + system + idle
× 100% (2.1)

However, these values are measured since the boot of the system. To obtain the usage at the
interval between n and n− 1, the following formula is used by the monitor agent:

(usern − usern−1) + (nicen − nicen−1) + (systemn − systemn−1)

(usern − usern−1) + (nicen − nicen−1) + (systemn − systemn−1) + (idlen − idlen−1)
× 100%

(2.2)
Using this formula, the average CPU load between two points in time is calculated. The other
values noted in /proc/stat are not used in the calculation of the CPU usage.

Monitoring RSS usage

In order to monitor the RSS usage of the system, the monitor agent has to open the /proc/meminfo
file. Among the contents of this file are the following lines:

MemTotal: 1015028 kB

MemFree: 78472 kB

Buffers: 10060 kB

Cached: 141524 kB

SwapCached: 18700 kB

Active: 429272 kB

Inactive: 420796 kB

In order to calculate the RSS usage, the monitor agent has to apply the following formula:

(MemTotal −MemFree) + (Buffers− Cached)

MemTotal
× 100% (2.3)

Contrary to the way the CPU usage is measured, the number calculated using this formula is
not an average measured over an interval, but a snapshot of the memory load at a given point
in time. The other values noted in /proc/meminfo are not used in the calculation of the RSS
usage.

2.1.2 Per-process monitoring

In order to provide statistics about individual processes and groups of processes, the resource
consumption of individual processes has to be monitored by the monitor agent. This can also be
done using the /proc filesystem. /proc contains a folder for each running process on the system
with the ID of the process as folder name. The resource consumption of a group of processes can
be calculated by determining the resource consumption of each individual process in the group.

1The number of CPU ticks, which has a rate of 100 per second on most architectures

11

Monitoring CPU usage

To monitor the CPU usage of an individual process, the monitor agent has to open the
/proc/[PID]/stat file. This file contains data about the statistics of the process, and looks as
following [7]:

2405 (pulseaudio) S 1 2404 2404 0 -1 4202560 1618 0 16 0 127 147 0 0 9 -11 3 0 7862

101781504 1054 4294967295 134512640 134589500 3220419104 3220418272 3078337572 0 0

3674112 19011 4294967295 0 0 17 2 0 0 97 0 0 134593380 134594612 143081472

3220425462 3220425510 3220425510 3220426728 0

The numbers required to calculate the CPU usage are found in the 14th and 15th field of this file.
These values contain the amount of time this process has been in user mode and kernel mode,
in jiffies. However, like the system wide monitoring of CPU usage, is this value measured since
the start of the process. Therefore, another average has to be calculated, as following:

(usern − usern−1) + (kerneln − kerneln−1)

total
× 100% (2.4)

The total amount of jiffies should be equal to CLK TCK2 times the time interval and can be
calculated using the denominator of equation 2.2.

Monitoring RSS usage

In order to monitor the RSS usage of a process, the 24th field of /proc/[PID]/stat has to be
used. This field contains the number of pages the process has in real memory. Multiplying this
with the size of one page gives the total amount of used memory. The percentage of used memory
can be calculated by the monitor agent as following:

pages× pagesize

total
× 100% (2.5)

The total amount of memory can be extracted from the /proc/meminfo file [4].

2.2 Grouping and limiting system resources

To group and limit the consumption of system resources, the cgroups feature of the Linux kernel
is used. This feature is available since Linux kernel version 2.6.24. cgroups features a virual
filesystem mounted at /sys/fs/cgroup [9].

2.2.1 cgroups

cgroups uses subsystems to control the different groups. These subsystems contain the link
for a group to a hardware resource. Subsystems are also known as resource controllers. The
different subsystems are folders in the /sys/fs/cgroup directory. The following subsystems are
available [17]:

• blkio - This subsystem limits and blocks I/O from and to physical media like hard disk
drives and USB sticks

• cpu - This subsystem uses the scheduler to prioritize CPU access for different groups

• cpuacct - This subsystem generates reports on CPU usage by different groups

• cpuset - This subsystem allows or denies access to different cores on a multi-core system
for different groups

• devices - This subsystem allows or denies access to devices for tasks in a group

• freezer - This subsystem suspends and restarts tasks in a group

2The amount of clock ticks per second

12

• memory - This subsystem limits the usage of the memory for processes in a group

• net_cls - This subsystem tags network packets with an identifiers so the Linux traffic
controller can identify packets from different groups

• net_prio - This subsystem prioritizes access to different network interfaces for different
groups

Using these subsystems, cgroups is capable of resource limiting, prioritization of processes,
accounting resource consumption and checkpointing groups of processes. cgroups allows one
process to be part of multiple groups, given the limit that these groups can not be connected to
the same subsystem.

2.2.2 Grouping tasks

To create a new group, the actuator agent creates a new folder in the directories of the subsystems
the group has to be connected to. The name of the folder equals the name of the group. Inside
these folders, the cgroups service creates serveral files, which contain the dynamics of the group.
One of these files is tasks, which contains a list of IDs of processes in the group. In order to
add a process to a group, its ID has to be written in this file.

2.2.3 Limiting resource consumption

A limitation or priorization of a group can be set by the actuator agent by writing in one of the
files in /sys/fs/cgroup/[SUBSYSTEM]/[GROUP]/. Since different subsystems contain different
files, a per-subsystem breakdown of the files to be edited will be given here.

Prioritizing CPU usage

In order to limit the usage of the CPU for a group, priorities can be given to different groups.
These priorities are dynamic. The priority of a group is set in the cpu.shares file inside the group
folder. This file is part of the cpu subsystem. By default, the priority is set to 1024. Lowering
this number grands the group a lower priority on the CPU, while increasing the number grands
the group a higher priority. However, lowering the priority of a group does not necessarily imply
that the processes in the group spend less time on the CPU, since this group could be the only
group requiring CPU time. When two groups have their priorities set to respectively 1024 and
2048 and both groups require the same amount of CPU time, the second group will spend twice
as much time on the CPU than the first group due to its higher priority.

Limiting RSS usage

Contrary to the limitation of the CPU, a static limitation can be set to the usage of the RSS. To
accomplish this, the memory.limit_in_bytes file has to be edited. This file is part of the memory
subsystem. The value of this file sets the maximum amount of user memory (including file cache)
for the group. When no suffix is added to the value in this file, the amount is interpreted as
bytes. However, larger units can be represented by adding a suffix like K, M or G.

2.3 Summary

In order to monitor resource consumption, the /proc file system has to be read. This file system
contains information about every running process on Linux, as well as system wide informa-
tion. To determine the system wide CPU usage, /proc/stat has to be opened by the monitor
agent. This file contains information about the time in jiffies the system spend in user, kernel,
system and idle mode. Using equation 2.2, the average CPU load in an interval can be calculated.

To monitor RSS usage, /proc/meminfo has to be read by the monitor agent. This file con-
tains information about the usage and total amount of memory. Using equation 2.3, the total

13

usage of RSS of the entire system can be calculated. Contrary to the calculated CPU usage, this
number is a snapshot and not an average over an interval.

/proc contains a subdirectory for every running process on the system. Inside this directory,
a file named stat can be opened by the monitor agent. This file contains serveral numbers,
among those numbers are two numbers indicating the time in jiffies spent in user and kernel
mode. Using these numbers and equation 2.4, the CPU usage of a single process over the last
interval can be calculated.

/proc/[PID]/stat also contains the number of pages in the RSS used by the process. Along
with the size of one page and the total memory size obtained from /proc/meminfo, the RSS
consumption of one process can be calculated using equation 2.5

To limit resource consumption, cgroups is used. cgroups features a virtual filesystem mounted
at /sys/fs/cgroup. cgroups works with subsystems, which are resource controllers and are
mounted directly under the cgroup folder. Inside the subsystem folder, a new folder can be
created in order to create a new group. To add processes to a group, the process ID has to be
added to the tasks file in the group directory. To limit consumption of a resource, a file inside
the group in the corresponding subsystem has to be edited. In case of CPU limitation, a priority
can be set to a group by editing /sys/fs/cgroup/cpu/[GROUP]/cpu.shares.

14

CHAPTER 3

Framework Design

In this chapter, the high-level design of the framework will be discussed. The framework is split
into two parts: the front end and the back end. All calculations and operations are done by the
back end, while the visualization of resource consumption and management of groups is handled
by the front end.

3.1 Back end

The back end handles all read/write operations on the pseudo- and virtual filesystems, as well as
all computations with the data from these read/write operations, as discussed in chapter 2. The
back end is split into two separate agents. One of these agents is the monitor agent, which task
is to read from the filesystems. The other agent is the actuator agent, whose task is to write to
the filesystems.

3.1.1 Monitor agent

The monitor agent reads all required data from the pseudo- and virtual filesystems. Therefore,
the monitor agent is in charge of the following tasks:

• Generating a list of active processes (from /proc)

• Generating a list of active groups (from /sys/fs/cgroup)

• Generating a list of processes in a group (both /sys/fs/cgroup and /proc)

• Determining system wide resource consumption (from /proc)

• Determining resource consumption of a group (both /sys/fs/cgroup and /proc)

The monitor agent is a stateless agent.

3.1.2 Actuator agent

The actuator agent is in charge of writing data to the pseudo- and virtual filesystems. Therefore,
the actuator agent is in charge of the following tasks:

• Creating new groups (using /sys/fs/cgroup)

• Editing existing groups (using /sys/fs/cgroup)

• Setting or removing limits for groups (using /sys/fs/cgroup)

The actuator agent is a stateless agent.

15

User

Front end
agent

Monitor
agent

Actuator
agent

group management

monitor requests

limits

success boolean

monitor information

visual information

Figure 3.1: Communication between the agents

3.2 Front end

The front end provides the layer between the user and the back end. Using the front end, the
user can view the visualization of resource consumption of the entire system, compared to the
resource consumption of one group. The user is also capable of setting limitations on resource
consumption for a group, as well as creating new groups and editing existing ones. Therefore,
the front end agent is in charge of the following tasks:

• Visualising resource consumption

• Providing an interface to create new groups

• Providing an interface to edit existing groups

• Providing an interface to add limits to groups

• Providing an overview of processes running on the system

• Providing an overview of groups active on the system

To keep data up to date, the front end agent has a polling loop, requesting information from the
monitoring agent every 0.5 seconds.

Contrary to the back end agents, the front end agent knows multiple states. This is caused
by the front end agent requiring information about the active groups, but this information needs
to be received from the monitor agent before the front end can send requests to edit or monitor
these groups. The first call of the front end agent should be MR2 as defined in section 6.2.2.
After this call has been answered, the front end agent is aware of the groups active on the system
and requests to edit these groups can be made.

3.3 Communication

This section describes the network protocol used between the three agents. The different agents
communicate over TCP, allowing the front end and back end to be run on separate systems. All
communication is done in JSON format. This set-up allows the front end and back end to be
run on separate systems, or a possible extension to communicatie with multiple back ends from
one front end. The communication between the agents is designed as following:

16

3.3.1 Protocol

Front end to monitor procotol

The front end agent can send requests to the monitor agent formatted as following1:

monitor call: {act: ’monitor’} (MR1)

| {act: ’groups’} (MR2)

| {act: ’processes’} (MR3)

| {act: ’group monitor’, args: {name: String}} (MR4)

| {act: ’group procs’, args: {name: String}} (MR5)

| {act: ’group limits’, args: {name: String}} (MR6)

MR1 is a request to get the global resource consumption. MR2 is a request to get the groups
currently active on the system. MR3 is a request to get the processes currently running on the
system. MR4 is a request to get the resource consumption of a group. MR5 is a request to
get the processes of a group, and MR6 requests the limits set for a group. These requests are
answered by the monitor agent as following:

MA1: {memory load: Float, cpu load: Float}
MA2: {Group [, Group]*}
MA3: {Process [, Process]*}
MA4: {memory load: Float, cpu load: Float}
MA5: {Process [, Process]*}
MA6: {Limit [, Limit]*}

Group: {subsystems: {[Subsystem [,Subsystem]*]},
processes: {[Process [, Process]*]}}

Subsystem: cpu | memory

Process: String: Integer
Limit: String: String

For example, a MR3 request to the monitor could be answered with:

{

"upstart-udev-br": 395,

"md": 21,

"rcu_bh": 8,

"scsi_eh_1": 45,

"kthreadd": 2,

"iprt": 461,

"khubd": 20,

"rsyslogd": 488,

"kworker/u2:0": 6,

"rcu_sched": 9,

"kswapd0": 25,

"gnome-terminal": 2847,

"mdm": 1332,

"cups-browsed": 571,

"mintUpdate": 1689,

"netns": 13,

"avahi-daemon": 521,

"NetworkManager": 729,

"ksoftirqd/0": 3,

"getty": 1384,

[...]

"python": 8971

}

1MR stands for Monitor Request, MA notes Monitor Answer

17

In this example, every entry in the JSON array notes a process, with its name as key and its ID
as value.

Front end to actuator protocol

The front end agent can send requests to the actuator agent formatted as following2:

actuator call: {act: ’create’, args:

{name: string, procs: {[Integer [, Integer]*]}} (AR1)

| {act: ’edit’, args:

{name: string, procs: {[Integer [, Integer]*]}} (AR2)

| {act: ’limit’, args:

{name: string, limits: {Limit [, Limit]*}}} (AR3)

Limit: Subsystem: String
Subsystem: cpu | memory

AR1 is a request to create a new group, providing the name of the group and the processes to
be included. AR2 is a request to edit a group, also providing the name of the group and the
processes to be included. AR3 is a request to set limits to a group, providing the group name
and the limits to be set. All requests get the same answer from the actuator agent, indicating
whether the request was executed successfully:

AA1, AA2, AA3: boolean

For example, an AR1 request could be formatted as following:

{

act: ’create’,

args: {

name: ’my_group’,

procs: [

2986,

8742,

1665,

8881,

8971

]

}

}

This requests the actuator agent to create a new group called my_group containing the processes
2986, 8742, 1665, 8881 and 8971. No communication exists between the monitor agent and the
acuator agent.

3.4 Summary

The framework is split into three separate agents. The back end consists of two agents. One of
them is a monitoring agent, in charge of reading the pseudo- and virtual filesystems. The other
is an actuator agent which is in charge of writing to these filesystems. Both back end agents
communicate with the front end agent, which is in charge of visualizing the data from the back
end and providing an interface to work with different groups.

The agents communicate over TCP, allowing the back end and front end to be ran on sepa-
rate systems. Communication between agents is formatted using JSON. The front end agent
runs a polling loop, requesting data from the monitor agent on a regular interval. The front end
agent knows multiple states: the first request of this agent is MR2 as defined in section 6.2.2 to
ensure knowledge of active groups on the system.

2AR stands for Actuator Request, AA notes Acuator Answer

18

CHAPTER 4

Implementation

In this chapter, the implementation of the high-level design of the framework is discussed. To
provide the multi-modal part of the framework, two types of front end have been developed.
One version of the front end is a local version, meant to be run on the same system as the back
end agents and is built to be controlled with a keyboard and mouse. The other version of the
front end is meant to be run on an external Android device, and thus be controlled using a touch
screen and touch gestures. This provides the user with two ways to look at the data provided
by the back end.

4.1 Developing the back end

Both back end agents are developed in C++. C++ has been chosen because its a relatively low-
level programming language, but is very powerful when combined with the Boost library [13].
Because C++ is a low-level language, the resource consumption of the back end is limited to a
minimum. Since the design of the back end of the framework is specific for the Linux operating
system, portability of the back end agents is not an issue.

4.1.1 Monitor agent

The monitor agent will listen to incoming calls on port 1209. When a call is received, the JSON
will be parsed and depending on the on the value of the act parameter, one of the following
actions will be executed. Each action has its own function to generate a JSON string to return.
To generate the JSON, libjansson [14] is used, which is an easy to use but powerful library for
C(++).

monitor

When the monitor action is received, the monitor agent has to create a JSON string contain-
ing information about the global usage of the resources of the system. To calculate this, the
/proc/stat file has to be parsed as discussed in section 2.1.1. Boost contains a handler for
opening directories and files. When a file is opened using Boost, each line of the file can be read
into a string. Using a stringstream, the first word of this string can be read and compared to cpu

and memory, to check if the line read is a line required for calculations. Also, for each iteration of
the monitor call, the last amount of jiffies noted on the cpu line is saved to calculcate the CPU
consumption on the next iteration.

groups

When the groups action is received, the monitor agent has to create a JSON string containing all
active groups on the system, including attached subsystems and a list of processes in the group.
This is achieved by using Boost to open every /sys/fs/cgroup/[SUBSYTEM] folder. A map is

19

used to save all active groups. Due to the hierarchical structure of cgroups, it has to be checked
wheter a group is attached to one or multiple subsystems. For each group in each subsystem,
an entry in the map is created. However, if the group has already an entry in the map and thus
has been added when scanning an earlier subsystem, only the subsystem is added to the already
existing entry. When a group has no previous entry in the map, an entry is created containing
the current subsystem and the processes in the group detected in the tasks file.

processes

When the processes action is received, the monitor agent has to create a JSON string containing
the process ID and name of every active processes on the system. This is achieved by opening
the /proc directory using Boost, and creating a folder iterator the examine every entry in the
folder. If the folder entry is a directory, its name is checked against a regular expression to check
if the folder name is a number, meaning the folder stands for an active process. If the folder
passes the check against the regular expression, the /proc/[PID]/status file is read to extract
the name of the process and a new process entry is added to the JSON string.

group monitor

When the group_monitor action is received, the monitor agent has to create a JSON string
containing the resource consumption of a group. This is achieved by first checking wheter
the group exists, which is done by opening every /sys/fs/cgroup/[SUBSYSTEM] directory and
checking for a subdirectory with the name of the group. As soon as this folder is found, the
tasks file is opened. For each line in this file, indicating a process in the group, the amount of
jiffies spend in user and kernel mode is added to a total. The total amount of jiffies for every
iteration of the group_monitor is saved in a map for every group, and using the last amount
of jiffies and the current amount of jiffies, the CPU usage can be calculated using equation 2.4.
The RSS usage is calculated as noted in equation 2.5 for every process, and added to the total
RSS usage of the group.

group procs

When the group_procs action is received, the monitor agent has to create a JSON string
containing the process ID and name of every process in the group provided in the request.
This is achieved by first checking wheter the group exists, which is done by opening every
/sys/fs/cgroup/[SUBSYSTEM] directory and checking for a subdirectory with the name of the
group. As soon as this folder is found, the tasks file is opened. For each line in this file, indi-
cating a process in the group, the corresponding /proc/[PID]/status file is opened to extract
the name of the process. The pair of the process name and ID is then added to the JSON.

4.1.2 Actuator agent

The actuator agent will listen to incoming calls on port 1210. Like the monitor agent, the
actuator agent parses incoming JSON and depending on the value of the act parameter, one of
the following actions is executed. The actuator agent also uses libjansson to generate JSON
and libcgroup [16] to work with groups. Since the actuator agent requires root privileges to
write to the virtual filesystem /sys/fs/cgroup, the agent has to be run using sudo.

create

When the create action is received, the actuator agent has to create a new group and add
processes to it. First, the actuator agent check wheter the group does not already exist, which
is done by checking every /sys/fs/cgroup/[SUBSYSTEM] directory for a subdirectory with the
name of this group. If the group already exists, the request fails and false is returned. Other-
wise, the actuator agent creates folders in every /sys/fs/cgroup/[SUBSYSTEM] directory with
the name of the group. For each created directory, the list of processes is added to the tasks

file.

20

edit

When the edit action is received, the actuator agent has to edit the list of member processes
of the group. This is achieved by first checking every /sys/fs/cgroup/[SUBSYSTEM] directory
wheter the provided group exists. If the group does not exist, false is returned. Whilst scanning
every subsystem directory, a list of subsystems the group is connected to is built. For every
subsystem, the tasks file is truncated and filled with the list of new processes provided.

limit

When the limit action is received, the actuator agent has to set limits to an existing group. To
ensure validity of the provided limits, every limit provided is parsed and compared to the group
name provided. This is done by extracting the subsystem from the limit name, which is trivial
since a limit name is build in the form of [SUBSYSTEM].[LIMIT]. If the /sys/fs/cgroup/

[SUBSYSTEM]/[GROUP NAME]/[LIMIT NAME] file exists, the provided limit is valid, since the ex-
istance of this folder implies that the group exists and the subsystem concerned is attached to
it. If every limit is valid, the limits are applied to the group. Otherwise, false is returned.

4.2 Developing the front end

Two versions of the front end will are developed: one desktop version, written in Python and an
Android version, written in Appcelerator Titanium [1].

4.2.1 Desktop

The desktop version of the front end is developed in Python. The choice for Python has been
made due to the scalabilty and wide range of available libraries. The first choice for a library to
develop a front end in Python was Kivy [15]. However, after working with Kivy for a few days,
several troublesome bugs started to appear. For example, when drawing an interactive graph
with Kivy, old plots do not get removed [12]. This causes ’ghosting’ to appear, which clutters
the graph and makes it incomprehensible. A workaround for this bug is to completely remove
the graph and draw a new graph, but this causes the graph to flicker every 0.5 seconds. Mainly
due to this bug, it has been decided to step away from Kivy and use wxPython. wxPython is
a port of the C++ wxWidgets class to Python [18]. wxPython has native support for graphical
interface items like buttons, menu bars and sliders. However, wxPython has no extensive support
for drawing graphs, so matplotlib is used for drawing graphs.

The front end agent places a call to the monitor agent every 0.5 seconds. When the answer
to this request is received, the result of every resource is added to an array with results of the
previous requests. The last 100 items of this array are plotted by matplotlib.

The front end has a menu bar, in which group management can be accessed. Group management
is accessible via seperate windows, which are implemented as different wxPython classes. The
different windows, their design and behaviour will be discussed here.

Main window

The main window of the front end agents shows two matplotlib graphs, noting the current
global resource consumption of the CPU and RSS. The main window has a menu bar, from
which the different other windows can be accessed. When a group is marked as active, the
resource consumption of the group is drawn in the same graphs as the system wide resource
consumption, which is also requested from the monitor agent every 0.5 seconds.

The main window uses the GridBagSizer of wxPython, so the elements in the window are
properly scaled to fit the size of the window. The GridBagSizer is based on a grid, but the
columns and rows that will stretch are provided by the user. In the main window, this translates
to the graphs being stretched, but labels remaining the same size.

21

New group window

The window to create a new group, as defined in the NewGroupFrame class, consists of two lists
containing process IDs and names. One list indicates the processes to be included in the new
group, and the other list indicates the processes not to be included in the group. In between
those lists are two buttons, one to switch an item from the list of processes to be included to the
list of processes not to be included, and one button to do the exact opposite. Below the lists is
a textbox, in which the name of the new group can be written. The window is concluded with
a button to submit the new group to the actuator agent. As soon as this button is pressed, the
list of processes to be included in the group and the name of the group are converted into JSON,
and send to the actuator agent.

The new group window uses a horizonal BoxSizer to scale the widgets: the lists get resized,
but the buttons in between remain the same size.

Edit group window

The edit group window, as defined in the EditGroupFrame class, is largely the same as the new
group window. Since the edit group window edits an already existing group, the name of the
group does not have to be defined again and the list of processes to be included is already filled.
The action send with the JSON to the actuator agent also differs (edit instead of new).

Set active group window

The set active group window, as defined in the SetGroupFrame class, consists of a dropdown
box and a button to save the active group. The active group is saved in a global variable in the
program and therefore accessible in every window class. Due to the basic layout of the set active
group window, this window is not scalable.

Current groups window

The current groups window, as defined in the ActiveGroupsFrame class, consists of a tree list
containing every group and its processes and attached subsystems. The current groups are
fetched using a MR2 request, after which the received JSON is parsed and added to the tree. To
make sure that the information in the list is up-to-date, a new MR2 request is send every time
the current groups window is opened.

Set limit window

The set limit window, as defined in the SetLimitsFrame class, consists of a label showing the
name of the active group and two widgets to set limits on the resource consumption: a slider to
set the CPU priority and a textbox to set the RSS limit. These widgets get their value via a
MR6 call and are placed in a panel, which allows a future extension of this window. Below the
panel, a button is placed to send the limits to the actuator agent, using an AR3 request.

4.2.2 Android

The Android version of the front end is developed using Appcelerator Titanium. Titamium is a
JavaScript based framework to develop applications for multiple mobile operating systems, like
Android and iOS. Titanium has build-in TCP support and is therefore capable of communicat-
ing with the existing back end agents. The communication with the back end is identical to the
desktop version of the back end, but the visualization is different.

When the application is booted, the local IP address of the system running the back end agents
has to be provided. The back end agents provide the IP address when booted. As soon as the
connection between the agents has been established, the user is provided with the main window
of the application. Using swipe gestures, the user can navigate between the different windows as

22

indicated in figure 4.1. The Android front end agent consists of the following windows:

Main
window

Current
groups

New group

Figure 4.1: Swipe gesture navigation for the Android front end agent

Main window

The main window, as defined in main.js, serves the same function as the main window of the
desktop front end agent. The Android front end agent uses RaphaelJS instead of matplotlib
to draw graphs of the resource consumption [3]. The graphs can be tapped, after which an alert
dialog containing the current consumption of the resource concerned is shown.

If an active group is set, the resource consumption of this group will also be drawn into the
graphs. The front end agent sends a MR1 request to the monitor agent every 0.5 seconds to
fetch the current resource consumption of the entire system, and a MR4 request every 0.5 seconds
if an active group is set.

The graphs are drawn into a ScrollView, which allows scrolling of the content if the content is
larger than the screen size. This provides an environment which can be easily extended.

Current groups window

The current groups window, as defined in current.js, shows a scrollable list of groups currently
active on the system. Next to the name of the group, three buttons are shown: Processes, Edit
and Limit. When the Processes button is clicked, a pop up containing a list of processes in the
group is shown. The information for this list is fetched by sending a MR5 request to the monitor
agent.

When the Edit button is clicked, a scrollable list of all processes on the system is shown, with
checkboxes next to the name of every process. Each process included in the group is checked, and
processes can be added to the group by checking the checkbox next to the name of the process.
The information shown in this window is fetched by sending a MR2 and MR5 request to the
monitor agent. As soon as the save button is clicked, an AR2 request is send to the actuator
agent to save the edited group.

When the Limit button is clicked, a popup to limit the resources of the group is shown. This
popup contains a slider to prioritize the CPU usage and a textbox to set a limit on the RSS
usage. The value of these widgets is set using data fetched via a MR6 request. As soon as the
save button is clicked, an AR3 request is send to the actuator agent to set the limits to the group.

New group window

The new group window, as defined in new.js, shows a scrollable list of active processes on the
system. This information is fetched using a MR2 call. Each of these processes has a checkbox
next to its name, indication wheter the process should be included in the new group. As soon
as the save button is clicked, an AR1 request is formulated and send to the actuator agent to
create the new group.

23

4.3 Summary

The back end agents of the framework are developed in C++, using the Boost library. The
monitor agent listens to incoming requests on port 1209, the acutator agent on port 1210. These
agents are platform specific, but this is no issue since the pseudo- and virtual filesystems required
by these agents are also platform specific. The back end uses libjansson to generate the JSON
used to transfer data between agents.

The front end agent of the framework is developed for two different platforms: a desktop com-
puter and an Android device. The desktop version of the front end is designed to be executed on
the same system as the back end agents, and is written in Python using the wxPython framework.
Graphs are drawn using matplotlib. The Android version of the front end is developed using
Appcelerator Titanium, and graphs are drawn using RaphaelJS. Both front end agents fetch
data about resource consumption from the monitor agent every 0.5 seconds.

24

CHAPTER 5

Experiments

In this chapter, several experiments on the application developed will be discussed. All experi-
ments are run on a Packard Bell Dot S netbook running Linux Mint 14.

5.1 System wide monitoring

In order to test the output of the application on system wide monitoring, a make process has
been executed while monitoring the global resource consumption. The result of this action can
be seen in screenshot C.1. The make process was started around timestamp 68 and finished
around timestamp 88. Within this interval, a CPU usage of 100% and a significant increase in
RSS usage can be seen.

5.2 Group monitoring

In order to test the output of the application on group monitoring, a group containing a Google
Chrome process was created. With this Chrome process, severval YouTube videos have been
viewed in order to increase CPU and RSS usage. The output of this experiment can be seen in
screenshot C.3. In this screenshot, it can be seen that the Chrome process causes an increase in
both the CPU and RSS usage, but does not consume all of the resources.

5.3 Resource limiting

In order to test the limiting of resources, the Google Chrome group from section 5.2 is used
again. The CPU priority is set to a low level (40%), and the RSS usage is limited to 32MB. The
same YouTube videos as in the previous experiment are opened. However, as seen in screenshot
C.4, the consumption of the resources is much lower than before. Google Chrome even crashed,
giving a notification about running out of memory.

5.4 Working with Android

In order to test the Android front end, the same experiments were executed as described above.
When adding Chrome processes to a group and activating this group using the restraints de-
scribed above, the results were similar to the results described above.

25

5.5 Summary

From these experiments, it can be concluded that the framework works. By setting a limit on
both the CPU and RSS usage of Google Chrome, it became practically impossible to watch a
few YouTube videos, because Chrome ran out of memory. The difference between the type of
limit set on the CPU and RSS also became clear: the RSS had a hard limit which it could not
exceed, but the CPU was limited using a priority, resulting in the group still using much of the
CPU time since other groups did not require much CPU time. The framework also runs when
the front end is executed from an external Android device.

26

CHAPTER 6

Conclusions

In this chapter, the conclusions drawn from the experiments and the development of the frame-
work will be discussed.

6.1 Limitations of the framework

One of the features of cgroups is that one process can be part of multiple groups, as long as these
groups are not connected to the same subsystem. In the framework discussed, when a group is
created, it is automatically connected to every subsystem available. Due to this, a process can
not be part of multiple groups in the framework. This is a design choice make to simpify working
with cgroups, since making processes part of only one group is easier to understand for the user.

A serious issue with the external front end is the fact that the connection is not secured. If
another user is aware of the IP address of the computer running the back end agents, it can con-
nect using its own external front end to monitor and limit resource consumption on the system.
The framework can be extended with a password, in order to make the connection secure. This
can be done by extending all requests with an extra password key, and checking the password in
the back end agents.

6.2 Future development

The framework discussed is extensible, and can be extended in the future. In this section,
theoretical options for futher development of the framework will be discussed, while technical
details about extending the framework can be found in appendix B.

6.2.1 Extending the front end

Currently, the framework consists of two resources being monitored: the CPU and RSS. How-
ever, a computer system contains way more resources to be monitored. Both front end agents
display the graphs of resource consumption inside a container that will be scrollable as soon as
the content size exceeds the screen size. This way, to add a new resource to be monitored, only
a new graph has to be added to the container and the correct JSON has to be parsed. Adding a
new resource to the front end also requires the resource to be added to the back end, which will
be discussed in section 6.2.2

Another extension would be to port the front end to other operating systems. The desktop
version of the front end is written in Python, which is a programming language which can be
run on multiple operating systems. If the desktop version of the front end would be extended
to connect to other IP addresses than 127.0.0.11, the desktop front end could also be executed

1The IP address which a computer uses to indicate itself

27

on a Windows computer or Mac, while it would still manage the resources of a Linux system.

Titanium is a framework build to develop for multiple operating systems at once. Titanium
code can be compiled to Android, iOS, Windows Phone, BlackBerry OS and Mobile Web. How-
ever, Titanium contains some small inconsistencies between the resulting applications on different
operating systems, so porting the Android framework to other mobile operating systems could
require some small rewritings of the code to provide a consistent front end application among all
mobile operating systems.

6.2.2 Extending the back end

One of the possible extensions of the back end is to add new resources to be managed. When a
new resource is added to the front end, as discussed in section 6.2.1, it also has to be added to
the monitor agent and to the actuator agent if the resource should be limitable.

Another extensions of the back end is to completely rewrite the back end to work with an-
other operation system. Even though /proc and cgroups are not available in operating systems
like Windows and OS X, there are functions to monitor and limit resource consumption. As long
as the protocol as defined in section is used, a modified back end works with the existing front
end.

6.3 Conclusion

The framework discussed provides a basic set up for the visualization, monitoring and actua-
tion of resource consumption in Linux computer systems. While the framework currently only
supports CPU and RSS monitoring and actuation, it is easily extensible and usable for a wide
variety of resources. Using a split front and back end communicating over TCP, it becomes
possible to manage resources from an external device.

Using the pseudo filesystem /proc, information about the resources consumption of running
processes and the entire system can be retrieved. This information is send to the front end
agent, which plots the data into a graph which grands the user insight in the consumption of
resources of the system and groups of processes on the system. Using the front end, the user can
send requests to the actuator agent to limit the resource consumption of groups. The actuator
agent implements the virtual filesystem /sys/fs/cgroup, from which groups can be managed
using subsystems. cgroups is a very powerful function of the Linux kernel, and the framework
can be extended to provide much more functionality of cgroups.

When compared to existing task managers discussed in section 1.1, the framework discussed
provides two key features which other task managers lack: the option to actuate groups of pro-
cesses and place limits using cgroups, and the option to manage resources from an external
device. The goal of the framework as discussed in the introduction, to provide the user with a
basic, extensible framework to visualize, monitor and limit groups of processes, is reached within
this thesis.

The framework discussed also has potential to be scaled to more resources and to function
on more devices, or even visualize multiple back end inputs into one front end. The development
of the framework should therefore be continued beyond the scope of this thesis.

28

Bibliography

[1] Appcelerator. Titanium Mobile Application Development. http://www.appcelerator.com/
titanium/.

[2] Apple. sysctl(3) Mac OS X Developer Tools Manual Page. https://developer.apple.

com/library/mac/documentation/Darwin/Reference/ManPages/man3/sysctl.3.html.

[3] Dmitry Baranovskiy. Raphael JS, 2012. http://www.raphaeljs.com/.

[4] T. Bowden, B. Bauer, J. Nerin, S. Feng, and S. Seibold. The /proc filesystem, 2009. https:
//www.kernel.org/doc/Documentation/filesystems/proc.txt.

[5] Jonathan Corbet. Notes from a container, October 29, 2007. http://lwn.net/Articles/

256389/.

[6] The Open Group. Base specifications. IEEE Std 1003.1, (7), 2013.

[7] Michael Kerrisk. proc(5) - Linux manual page, 2014. http://man7.org/linux/man-pages/
man5/proc.5.html.

[8] William LeFebvre. top - display and update information about the top cpu processes, 2007.
http://www.unixtop.org/man.shtml.

[9] Paul Menage. cgroups. https://www.kernel.org/doc/Documentation/cgroups/

cgroups.txt.

[10] Microsoft. Win32 Process class. http://msdn.microsoft.com/en-us/library/aa394372%
28v=vs.85%29.aspx.

[11] Hisham Muhammad. htop - an interactive process-viewer for Linux. http://hisham.hm/

htop.

[12] sirpercival. Moving a MeshLinePlot leaves artifacts, May 6, 2014. https://github.com/

kivy-garden/garden.graph/issues/8.

[13] Boost team. Boost C++ libraries. http://www.boost.org/.

[14] Jansson team. Jansson - C library for working with JSON data. http://www.digip.org/

jansson/.

[15] Kivy team. Kivy: Cross-platform Python Framework for NUI Development. http://www.

kivy.org/.

[16] Libcgroup team. libcgroup. http://libcg.sourceforge.net/html/index.html.

[17] RedHat team. Introduction to Control Groups. https://access.redhat.com/site/

documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_

Guide/ch01.html.

[18] wxPython team. wxPython, 2013. http://www.wxpython.org/.

29

Appendices

30

APPENDIX A

Usage

In this appendix, all information about running the framework will be discussed.

A.1 Dependencies

In order to compile the back end and run the front end, serveral dependencies have to be installed
on the system. These programs have to be installed on the system:

• libboost-all-dev

• libjansson-dev

• libcgroup-dev

• cgroup-bin

• python

• python-wxgtk2.8

• python-matplotlib

A.2 Compiling and running

Both the monitor agent and the actuator agent can be build using the make command. When
finished, the monitor can be started using the ./monitor command from the monitor folder.
The actuator agent needs root privileges, so it has to be started using the sudo ./actuator

command from the actuator folder. As soon as both back end agents are booted, the desktop
front end agent can be started using the python frontend.py command from the gui folder, or
the Android front end agent can be booted. In order for the Android front end agent to be able
to connect to the back end agents, the Android device has to be connected to the same network
as the system running the back end agents.

31

APPENDIX B

Extending the framework

The framework discussed is built to support extensions. In order to extend the framework, some
files have to be edited. This section described which files have to be edited in order to add new
functionality to the framework.

B.1 Extending the back end

In this subsection, the way to edit the back end agents to manage more resources will be discussed.

B.1.1 Monitor agent

In order to edit the monitor agent to support more resources, the main.cpp file in the monitor

folder has to be edited. To support a new resource in the monitoring of the system wide resource
consumption, the std::string monitor() function has to be extended. In this function, the
CPU and RSS usage are computated and added to a JSON object called toSend, which is con-
verted into a string by libjansson. A new item can be added to this JSON object using the
function json_object_set_new. This function expects three parameters: the JSON object to
add an item to, a string with the key of the object and the item to add to the JSON object,
which should also be a JSON object. libjansson contains functions to generate JSON objects
from basic data types like integers, floats and strings. For example, the CPU usage is added to
toSend using json_object_set_new(toSend, "cpu_load", json_real(cpu_load));. When
adding a new item to this JSON object, a similar syntax should be used.

In order to add a new resource to group monitoring, the function std::string cgroup_status

has to be edited. This function contains a loop computating resource consumption for every pro-
cess, and adding this to a total. To extend this function to support more resources, this loop can
be utilized. After this loop, another JSON object, group_status, is generated. The generated
totals from the process loop are added to this object, which is then returned as a string. To add
a new item to this JSON object, another json_object_set_new call has to be added.

B.1.2 Actuator agent

To support actuation of extra resources, the main.cpp file in the monitor folder has to be
extended. Due to the dynamic handling of limits by the actuator as described in section 4.1.2,
only the link to the subsystem required to actuate the resource has to be added. This has to
be done in the int new_cgroup function. The creation of groups is handled by libcgroup,
by adding items to a cgroup object. Adding subsystems to a group is done by calling the
function cgroup_add_controller, which requires two parameters: the cgroup object to attach
the subsystem to, and the name of the subsystem to add. For example, the cpu subsystem is
added to the new group by calling cgroup_add_controller(group, "cpu");.

32

B.2 Extending the front end

In this section, the way to extend the front end to support more resources is discussed.

B.2.1 Desktop version

The desktop version of the front end can be extended to support more resources by editing the
frontend.py file in the gui folder. To monitor more resources, the TaskGroupManager class has
to be edited. In this class, multiple functions have to be edited. In the InitUI function, a new
graph has to be added. This is done using the following syntax:

self.cpu_plot = MatplotPanel(panel)

As discussed in section 4.2.1, this class utilizes a GridBagSizer to display all widgets. The new
graph has to be added to this sizer using the following syntax:

sizer.Add(self.cpu_plot, pos=(1,0), span=(1,4), flag=wx.EXPAND|wx.LEFT|wx.RIGHT,

border=5)

The graphs indicating the CPU and RSS usage are located at rows 1 and 2, so a next graph
should be inserted at row 3. However, the GridBagSizer needs to know which rows and columns
should be stretched when resizing the window, to one last line has to be added to this function:

sizer.AddGrowableRow(X)

In which X indicates the row at which the new graph is inserted.

To keep track of the consumption of the new resource over time, a global array needs to be
declared. Every time an update about the system wide resource consumption is received, the
value for the new resource has to be added to this array. To draw the newly received data in
the graph generated before, the JSON has to be parsed, added to the array and the data in the
graph has to be updated. This can be done using the following syntax in the newInfo function:

cpu_load.append(float(received_json[’cpu_load’]))

self.cpu_plot.updateData(cpu_load, ’cpu’)

In which cpu_load is the global array, received_json contains the JSON received from the
monitor agent and self.cpu_plot the graph created before. The new resource also has to be
monitored on a group level. The newInfo function also contains a loop iterating over every active
group, and requesting the resource consumption of that group. The new resource can be added
to the cgroup history using the following syntax:

cgroups[i][1].append(float(groupjson[’cpu’]))

The CPU and RSS usage are placed at index 1 and 2 of the group object, so new resources should
start at index 3. However, the group object needs to be extended to support more arrays, which
is done by editing the setGroup function of the SetGroupFrame class. When adding a new
resource to the framework, the line cgroups.append([(self.cb.GetValue(), [0], [0])])

should become cgroups.append([(self.cb.GetValue(), [0], [0], [0])]) to support an
extra resource.

Some adjustments have to be made to the updateData function of the MatplotPanel class.
To give the plot the correct label, a check for the mode variable has to be extended. This is done
using the following syntax:

if mode == ’cpu’:

self.axes.set_title(’CPU usage’, size=12)

In which mode is the second parameter used in the updateData call used before.

Finally, to support actuation of a new resource, a new widget should be added to the __init__

function of the SetLimitFrame class. Then, in the SendLimits function of this class, the value
of the widget has to be processed and added to the JSON object to send to the actuator agent,
using the limit to set as key.

33

B.2.2 Android version

In order to extend the Android version of the framework, the main.js file has to be edited.
Like the desktop version of the front end agent, the history of the resource consumption is kept
in global arrays. To support a new resource to be monitored, another global array has to be
created. Then, in the getData function, the value of the new resource has to be extracted from
the JSON and added to the global variable, using the following syntax:

cpu_usage.push(received_json[’cpu_usage’]);

The global variable keeping track of the resource consumption of the active group also has to be
extended. This is done by extending the initGroupData function, using the following syntax:

group_data[’cpu_load’] = new Array();

In which cpu_load should be replaced by a key to represent the resource to be added. Then, in
the initUI function, a graph has to be created for the new resource. This is done by calling the
insertNewGraph function, using the global variable declared before, the key used in the global
array for group resource consumption and the label to display above the graph as parameters.
The framework takes care of adding the graph to the view and refreshing the graph when new
data arrives.

In order to allow the new resource to be actuated by the Android front end agent, the current.js
file has to be edited. A new widget should be added to the addLimitWidgets function. Then
the setLimitValues function has to be extended to extract the value of this widget and add it
to the JSON object to be send to the actuator, using the limit to set as key.

34

APPENDIX C

Screenshots

C.1 Desktop front end

Figure C.1: Main interface. This screenshot shows the main window during a make operation,
in which the CPU is fully used and the usage of RSS increases significantly.

35

Figure C.2: Interface to create a new group. This screenshot shows the creation of a new group
called group name, containing processes 2379, 27, 24 and 512.

Figure C.3: Behaviour of the program when working with Google Chrome. The blue lines
indicate the group containing the Chrome processes, which consumes a lot of the resouces.

36

Figure C.4: Behaviour of the program when working with a limited group. When compared to
figure C.3, it can be seen that the resource consumption of the group is lower.

37

C.2 Android front end

Figure C.5: Main window of the Android front end agent, showing the resource consumption of
the entire system.

38

Figure C.6: Overview of current groups in the Android front end agent

39

Figure C.7: Creating a new group in the Android front end agent

40

